We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A perspective on diet, epigenetics and complex diseases: where is the field headed next?

    Fabio Coppedè

    *Author for correspondence: Tel.: +39 050 221 8544;

    E-mail Address: fabio.coppede@med.unipi.it

    Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, 56126, Italy

    ,
    Marica Franzago

    Department of Medicine & Aging, School of Medicine & Health Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy

    Center for Advanced Studies & Technology, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy

    ,
    Emiliano Giardina

    Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, 00179, Italy

    Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, 00133, Italy

    ,
    Cristiana Lo Nigro

    Central Laboratory, Galliera Hospital, Genoa, 16128, Italy

    ,
    Giuseppe Matullo

    Department of Medical Sciences, University of Turin, Turin, 10126, Italy

    ,
    Chiara Moltrasio

    Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy

    Department of Medical Surgical & Health Sciences, University of Trieste, Trieste, 34137, Italy

    ,
    Benedetta Nacmias

    Department of Neuroscience, Psychology, Drug Research & Child Health, University of Florence, Florence, 50139, Italy

    IRCCS Fondazione Don Carlo Gnocchi, Florence, 50143, Italy

    ,
    Silvana Pileggi

    Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy

    ,
    Silvia Maria Sirchia

    Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy

    ,
    Andrea Stoccoro

    Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, 56126, Italy

    ,
    Clelia Tiziana Storlazzi

    Department of Biology, University of Bari “Aldo Moro”, Bari, 70124, Italy

    ,
    Liborio Stuppia

    Center for Advanced Studies & Technology, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy

    Department of Psychological, Health & Territorial Sciences, School of Medicine & Health Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy

    ,
    Rossella Tricarico

    Department of Biology & Biotechnology, University of Pavia, Pavia, 27100, Italy

    &
    Giuseppe Merla

    Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, 71013, Italy

    Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy

    Published Online:https://doi.org/10.2217/epi-2022-0239

    Dietary factors can regulate epigenetic processes during life, modulating the intracellular pools of metabolites necessary for epigenetic reactions and regulating the activity of epigenetic enzymes. Their effects are strong during the prenatal life, when epigenetic patterns are written, allowing organogenesis. However, interactions between diet and the epigenome continue throughout life and likely contribute to the onset and progression of various complex diseases. Here, we review the contribution of dietary factors to the epigenetic changes observed in complex diseases and suggest future steps to better address this issue, focusing on neurobehavioral, neuropsychiatric and neurodegenerative disorders, cardiovascular diseases, obesity and Type 2 diabetes, cancer and inflammatory skin diseases.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Felsenfeld G. A brief history of epigenetics. Cold Spring Harb. Perspect. Biol. 6(1), a018200 (2014).
    • 2. Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics. Oncol. Rep. 37(1), 3–9 (2017).
    • 3. Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1), 3–12 (2014).
    • 4. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23(15), 5293–5300 (2003).
    • 5. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114(4), 567–572 (2006).
    • 6. Odhiambo JF, Pankey CL, Ghnenis AB, Ford SP. A review of maternal nutrition during pregnancy and impact on the offspring through development: evidence from animal models of over- and undernutrition. Int. J. Environ. Res. Public Health 17(18), 6926 (2020).
    • 7. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 82(8), 485–491 (2006).
    • 8. Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105(44), 17046–17049 (2008). • Interesting article showing long-lasting epigenetic consequences of prenatal famine exposure.
    • 9. Tobi EW, Lumey LH, Talens RP et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18, 4046–4053 (2009).
    • 10. Zhang Y, Kutateladze TG. Diet and the epigenome. Nat. Commun. 9(1), 3375 (2018).
    • 11. Dai Z, Ramesh V, Locasale JW. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21(12), 737–753 (2020). •• Interesting review on interactions between diet and the epigenome.
    • 12. Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic. Biol. Med. 170, 19–33 (2021). • Interesting review on interactions between redox metabolism and epigenetics.
    • 13. Evans LW, Ferguson BS. Food bioactive HDAC inhibitors in the epigenetic regulation of heart failure. Nutrients 10(8), 1120 (2018). • Interesting review on the epigenetic properties of natural compounds.
    • 14. Ferrero G, Carpi S, Polini B et al. Intake of natural compounds and circulating microRNA expression levels: their relationship investigated in healthy subjects with different dietary habits. Front. Pharmacol. 11, 619200 (2021).
    • 15. Woo V, Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes 14(1), 2022407 (2022).
    • 16. Li D, Li Y, Yang S, Lu J, Jin X, Wu M. Diet-gut microbiota-epigenetics in metabolic diseases: from mechanisms to therapeutics. Biomed. Pharmacother. 153, 113290 (2022).
    • 17. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467(7318), 963–966 (2010).
    • 18. Yajnik CS, Deshpande SS, Jackson AA et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51(1), 29–38 (2008).
    • 19. González-Peña SM, Calvo-Anguiano G, Martínez-de-Villarreal LE et al. Maternal folic acid intake and methylation status of genes associated with ventricular septal defects in children: case–control study. Nutrients 13(6), 2071 (2021).
    • 20. Ly A, Lee H, Chen J et al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res. 71(3), 988–997 (2011).
    • 21. Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front. Neurosci. 16, 909762 (2022).
    • 22. Venu L, Padmavathi IJ, Kishore YD et al. Long-term effects of maternal magnesium restriction on adiposity and insulin resistance in rat pups. Obesity (Silver Spring) 16(6), 1270–1276 (2008).
    • 23. Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and diet in the prevention of chronic diseases in future generations. Int. J. Mol. Sci. 21(7), 2633 (2020).
    • 24. Perera BPU, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. Environ. Mol. Mutagen. 61(1), 176–192 (2020).
    • 25. Lillycrop KA, Burdge GC. Maternal diet as a modifier of offspring epigenetics. J. Dev. Orig. Health Dis. 6(2), 88–95 (2015).
    • 26. Kitsiou-Tzeli S, Tzetis M. Maternal epigenetics and fetal and neonatal growth. Curr. Opin. Endocrinol. Diabetes Obes. 24(1), 43–46 (2017).
    • 27. Tobi EW, Slagboom PE, van Dongen J et al. Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLOS ONE 7(5), e37933 (2012).
    • 28. Hoyo C, Daltveit AK, Iversen E et al. Erythrocyte folate concentrations, CpG methylation at genomically imprinted domains, and birth weight in a multiethnic newborn cohort. Epigenetics 9(8), 1120–1130 (2014).
    • 29. LaRocca J, Binder AM, McElrath TF, Michels KB. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ. Res. 133, 396–406 (2014).
    • 30. de Sousa Fernandes MS, Calazans CT, Santos GCJ. Maternal diet and epigenetic modifications at the start of life: repercussions on the development of obesity. Health Sci. J. 15(9), 1–4 (2021).
    • 31. Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 14(3), 215–235 (2019).
    • 32. Barker DJ. The developmental origins of adult disease. Eur. J. Epidemiol. 18(8), 733–736 (2003). •• Seminar paper on the developmental origins of adult disease.
    • 33. Soubry A. POHaD: why we should study future fathers. Environ. Epigenet. 4(2), dvy007 (2018). •• Seminar paper on the paternal origins of adult disease.
    • 34. Stuppia L, Franzago M, Ballerini P, Gatta V, Antonucci I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin. Epigenetics 7(1), 1–15 (2015).
    • 35. Franzago M, Rovere ML, Franchi PG Vitacolonna E, Stuppia L. Epigenetics and human reproduction: the primary prevention of the noncommunicable diseases. Epigenomics 11(12), 1441–1460 (2019).
    • 36. Donkin I, Versteyhe S, Ingerslev LR et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell. Metab. 23(2), 369–378 (2016).
    • 37. Franzago M, Sabovic I, Franchi S et al. Sperm DNA methylation at metabolism-related genes in vegan subjects. Front. Endocrinol. (Lausanne) 12, 633943 (2021).
    • 38. Moody L, Chen H, Pan YX. Early-life nutritional programming of cognition – the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv. Nutr. 8(2), 337–350 (2017).
    • 39. Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol. 15(7), 760–774 (2016).
    • 40. Gallo R, Stoccoro A, Cagiano R et al. Correlation among maternal risk factors, gene methylation and disease severity in females with autism spectrum disorder. Epigenomics 14(4), 175–185 (2022).
    • 41. Faa G, Manchia M, Pintus R, Gerosa C, Marcialis MA, Fanos V. Fetal programming of neuropsychiatric disorders. Birth Defects Res. C Embryo Today 108(3), 207–223 (2016).
    • 42. Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B Neuropsychiatr. Genet. 174(6), 651–660 (2017).
    • 43. Gawlińska K, Gawliński D, Filip M, Przegaliński E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr. Rev. 79(6), 709–725 (2021).
    • 44. Gawlińska K, Gawliński D, Borczyk M, Korostyński M, Przegaliński E, Filip M. A maternal high-fat diet during early development provokes molecular changes related to autism spectrum disorder in the rat offspring brain. Nutrients 13(9), 3212 (2021).
    • 45. Fesser EA, Gianatiempo O, Berardino BG et al. Limited contextual memory and transcriptional dysregulation in the medial prefrontal cortex of mice exposed to early protein malnutrition are intergenerationally transmitted. J. Psychiatr. Res. 139, 139–149 (2021).
    • 46. House JS, Mendez M, Maguire RL et al. Periconceptional maternal Mediterranean diet is associated with favorable offspring behaviors and altered CpG methylation of imprinted genes. Front. Cell Dev. Biol. 6, 107 (2018).
    • 47. Lozupone M, D'Urso F, Piccininni C et al. The relationship between epigenetics and microbiota in neuropsychiatric diseases. Epigenomics 12(17), 1559–1568 (2020).
    • 48. World Alzheimer Report 2015. Alzheimer's Disease International, London, UK (2015).
    • 49. Migliore L, Coppedè F. Gene–environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat. Rev. Neurol.(2022). doi:10.1038/s41582-022-00714-w
    • 50. Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 70, 101397 (2021).
    • 51. Thelen M, Brown-Borg HM. Does diet have a role in the treatment of Alzheimer's disease? Front. Aging Neurosci. 12, 617071 (2020).
    • 52. Giridharan VV, Barichello De Quevedo CE, Petronilho F. Microbiota–gut–brain axis in the Alzheimer's disease pathology – an overview. Neurosci. Res. 181, 17–21 (2022).
    • 53. Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts imbalance imbalances the brain: a review of gut microbiota association with neurological and psychiatric disorders. Front. Med. (Lausanne) 9, 813204 (2022).
    • 54. Martínez Leo EE, Segura Campos MR. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 71, 110609 (2020).
    • 55. Wang X, Sun G, Feng T et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression. Cell Res. 29(10), 787–803 (2019).
    • 56. Saji N, Murotani K, Hisada T et al. Relationship between dementia and gut microbiome-associated metabolites: a cross-sectional study in Japan. Sci. Rep. 10(1), 8088 (2020).
    • 57. Nagu P, Parashar A, Behl T, Mehta V. Gut microbiota composition and epigenetic molecular changes connected to the pathogenesis of Alzheimer's disease. J. Mol. Neurosci. 71(7), 1436–1455 (2021).
    • 58. Coppedè F. One-carbon metabolism and Alzheimer's disease: focus on epigenetics. Curr. Genomics 11(4), 246–260 (2010).
    • 59. Fuso A, Seminara L, Cavallaro RA, D'Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol. Cell. Neurosci. 28(1), 195–204 (2005). • Interesting article linking one-carbon metabolism to the epigenetic regulation of key Alzheimer's disease genes.
    • 60. Chan A, Shea TB. Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J. Neurochem. 102(3), 753–760 (2007).
    • 61. Chan A, Rogers E, Shea TB. Dietary deficiency in folate and vitamin E under conditions of oxidative stress increases phospho-tau levels: potentiation by ApoE4 and alleviation by S-adenosylmethionine. J. Alzheimers Dis. 17(3), 483–487 (2009).
    • 62. Fuso A, Nicolia V, Ricceri L et al. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol. Aging 33(7), 1482.e1–16 (2012).
    • 63. Do Carmo S, Hanzel CE, Jacobs ML et al. Rescue of early bace-1 and global DNA demethylation by S-adenosylmethionine reduces amyloid pathology and improves cognition in an Alzheimer's model. Sci. Rep. 6, 34051 (2016).
    • 64. Cavallaro RA, Nicolia V, Fiorenza MT, Scarpa S, Fuso A. S-Adenosylmethionine and superoxide dismutase 1 synergistically counteract Alzheimer's disease features progression in TgCRND8 mice. Antioxidants (Basel) 6(4), 76 (2017).
    • 65. Grossi E, Stoccoro A, Tannorella P, Migliore L, Coppedè F. Artificial neural networks link one-carbon metabolism to gene-promoter methylation in Alzheimer's disease. J. Alzheimers Dis. 53(4), 1517–1522 (2016).
    • 66. Monti N, Cavallaro RA, Stoccoro A et al. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics 15(8), 781–799 (2020).
    • 67. Chan A, Paskavitz J, Remington R, Rasmussen S, Shea TB. Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer's disease: a 1-year, open-label pilot study with a 16-month caregiver extension. Am. J. Alzheimers Dis. Other Demen. 23(6), 571–585 (2008).
    • 68. Remington R, Chan A, Paskavitz J, Shea TB. Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer's disease: a placebo-controlled pilot study. Am. J. Alzheimers Dis. Other Demen. 24(1), 27–33 (2009).
    • 69. Remington R, Bechtel C, Larsen D et al. A phase II randomized clinical trial of a nutritional formulation for cognition and mood in Alzheimer's disease. J. Alzheimers Dis. 45(2), 395–405 (2015).
    • 70. Remington R, Bechtel C, Larsen D et al. Maintenance of cognitive performance and mood for individuals with Alzheimer's disease following consumption of a nutraceutical formulation: a one-year, open-label study. J. Alzheimers Dis. 51(4), 991–995 (2016).
    • 71. Coppedè F. Epigenetic regulation in Alzheimer's disease: is it a potential therapeutic target? Expert Opin. Ther. Targets 25(4), 283–298 (2021).
    • 72. Smith RG, Pishva E, Shireby G et al. A meta-analysis of epigenome-wide association studies in Alzheimer's disease highlights novel differentially methylated loci across cortex. Nat. Commun. 12(1), 3517 (2021).
    • 73. Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. Environmental impact on the epigenetic mechanisms underlying Parkinson's disease pathogenesis: a narrative review. Brain Sci. 12(2), 175 (2022).
    • 74. Coppedè F. Epigenetics of neuromuscular disorders. Epigenomics 12(23), 2125–2139 (2020).
    • 75. Newell ME, Adhikari S, Halden RU. Systematic and state-of-the science review of the role of environmental factors in amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease. Sci. Total Environ. 817, 152504 (2022).
    • 76. Xie A, Ensink E, Li P et al. Bacterial butyrate in Parkinson's disease is linked to epigenetic changes and depressive symptoms. Mov. Disord. 37(8), 1644–1653 (2022).
    • 77. Caputo V, Strafella C, Termine A et al. Epigenomic signatures in age-related macular degeneration: focus on their role as disease modifiers and therapeutic targets. Eur. J. Ophthalmol. 31(6), 2856–2867 (2021).
    • 78. Gastaldello A, Giampieri F, Quiles JL et al. Adherence to the Mediterranean-style eating pattern and macular degeneration: a systematic review of observational studies. Nutrients 14(10), 2028 (2022).
    • 79. Keeling E, Lynn SA, Koh YM et al. A high fat “Western-style” diet induces AMD-like features in wildtype mice. Mol. Nutr. Food Res. 66(11), e2100823 (2022).
    • 80. Hunter A, Spechler PA, Cwanger A et al. DNA methylation is associated with altered gene expression in AMD. Invest. Ophthalmol. Vis. Sci. 53(4), 2089–2105 (2012).
    • 81. Wang Z, Huang Y, Chu F et al. Integrated analysis of DNA methylation and transcriptome profile to identify key features of age-related macular degeneration. Bioengineered 12(1), 7061–7078 (2021).
    • 82. Liang G, Ma W, Luo Y, Yin J, Hao L, Zhong J. Identification of differentially expressed and methylated genes and construction of a co-expression network in age-related macular degeneration. Ann. Transl. Med. 10(4), 223 (2022).
    • 83. Wallace RG, Twomey LC, Custaud MA et al. The role of epigenetics in cardiovascular health and ageing: a focus on physical activity and nutrition. Mech. Ageing Dev. 174, 76–85 (2018).
    • 84. Bowen KJ, Sullivan VK, Kris-Etherton PM, Petersen KS. Nutrition and cardiovascular disease – an update. Curr. Atheroscler. Rep. 20(2), 8 (2018).
    • 85. Kalea AZ, Drosatos K, Buxton JL. Nutriepigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 21(4), 252–259 (2018).
    • 86. Fernández-Sanlés A, Baixeras SS, Subirana I, Degano IR, Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review. Atherosclerosis 263, 325–333 (2017).
    • 87. Tabaei S, Tabaee SS. DNA methylation abnormalities in atherosclerosis. Artif. Cells Nanomed. Biotechnol. 47(1), 2031–2041 (2019).
    • 88. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol. 5(7), 401–408 (2009).
    • 89. Fernández-Sanlés A, Sayols-Baixeras S, Subirana I et al. DNA methylation biomarkers of myocardial infarction and cardiovascular disease. Clin. Epigenet. 13(1), 86 (2021).
    • 90. Tremblay BL, Guénard F, Rudkowska I, Lemieux S, Couture P, Vohl MC. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clin. Epigenet. 9, 43 (2017).
    • 91. Papait R, Cattaneo P, Kunderfranco P et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. U S A 110(50), 20164–20169 (2013).
    • 92. Evans LW, Athukorala M, Martinez-Guryn K, Ferguson BS. The role of histone acetylation and the microbiome in phytochemical efficacy for cardiovascular diseases. Int. J. Mol. Sci. 21(11), 4006 (2020).
    • 93. Kalea AZ, Drosatos K, Buxton JL. Nutriepigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 21(4), 252–259 (2018). • Interesting manuscript on nutriepigenetics and cardiovascular disease.
    • 94. Gharipour M, Mani A, Amini Baghbahadorani M et al. How are epigenetic modifications related to cardiovascular disease in older adults? Int. J. Mol. Sci. 22(18), 9949 (2021).
    • 95. Wu L, Dai X, Zhan J et al. Profiling peripheral microRNAs in obesity and Type 2 diabetes mellitus. APMIS 123(7), 580–585 (2015).
    • 96. Jayawardena E, Medzikovic L, Ruffenach G, Eghbali M. Role of miRNA-1 and miRNA-21 in acute myocardial ischemia – reperfusion injury and their potential as therapeutic strategy. Int. J. Mol. Sci. 23(3), 1512 (2022).
    • 97. Milagro FI, Miranda J, Portillo MP, Fernandez-Quintela A, Campión J, Martínez JA. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLOS ONE 8(1), e54319 (2013).
    • 98. Du H, Zhao Y, Li H, Wang DW, Chen C. Roles of microRNAs in glucose and lipid metabolism in the heart. Front. Cardiovasc. Med. 8, 716213 (2021).
    • 99. Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res. 115(12), 1732–1756 (2019).
    • 100. Shi Y, Qu J, Gai L, Yuan D, Yuan C. Long non-coding RNAs in metabolic and inflammatory pathways in obesity. Curr. Pharm. Des. 26(27), 3317–3325 (2020).
    • 101. Franco D, Aranega A, Dominguez JN. Non-coding RNAs and atrial fibrillation. Adv. Exp. Med. Biol. 1229, 311–325 (2020).
    • 102. Zhu L, Li N, Sun L, Zheng D, Shao G. Non-coding RNAs: the key detectors and regulators in cardiovascular disease. Genomics 113(1 Pt 2), 1233–1246 (2021).
    • 103. Yin L, Zhu X, Novák P et al. The epitranscriptome of long noncoding RNAs in metabolic diseases. Clin. Chim. Acta 515, 80–89 (2021).
    • 104. Cannataro R, Perri M, Gallelli L, Caroleo MC, De Sarro G, Cione E. Ketogenic diet acts on body remodeling and microRNAs expression profile. MicroRNA 8(2), 116–126 (2019).
    • 105. Assmann TS, Riezu-Boj JI, Milagro FI, Martínez JA. Circulating adiposity-related microRNAs as predictors of the response to a low-fat diet in subjects with obesity. J. Cell. Mol. Med. 24(5), 2956–2967 (2020).
    • 106. Skuratovskaia DA, Vulf MA, Komar A, Kirienkova E, Litvinova LS. Epigenetic regulation as a promising tool for treatment of atherosclerosis. Front. Biosci. 12(1), 173–199 (2020).
    • 107. Estrella Ibarra P, García-Solís P, Solís-Sáinz JC, Cruz-Hernández A. Expression of miRNA in obesity and insulin resistance: a review. Endokrynol. Pol. 72(1), 73–80 (2021).
    • 108. Rosato V, Temple NJ, La Vecchia C, Castellan G, Tavani A, Guercio V. Mediterranean diet and cardiovascular disease: a systematic review and meta-analysis of observational studies. Eur. J. Nutr. 58(1), 173–191 (2019).
    • 109. Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E. Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog. Cardiovasc. Dis. 58(1), 50–60 (2015).
    • 110. Arpón A, Riezu-Boj JI, Milagro FI et al. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J. Physiol. Biochem. 73(3), 445–455 (2017).
    • 111. Canouil M, Khamis A, Keikkala E et al. Epigenome-wide association study reveals methylation loci associated with offspring gestational diabetes mellitus exposure and maternal methylome. Diabetes Care 44(9), 1992–1999 (2021).
    • 112. Tobi EW, Juvinao-Quintero DL, Ronkainen J et al. Maternal glycemic dysregulation during pregnancy and neonatal blood DNA methylation: meta-analyses of epigenome-wide association studies. Diabetes Care 45(3), 614–623 (2022).
    • 113. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133(2), 187–225 (2016).
    • 114. Boeke CE, Baccarelli A, Kleinman KP et al. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics 7(3), 253–260 (2012).
    • 115. Azzi S, Sas TCJ, Koudou Y et al. Degree of methylation ofZAC1(PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 9(3), 338–345 (2014).
    • 116. Martin CL, Jima D, Sharp GC et al. Maternal pre-pregnancy obesity, offspring cord blood DNA methylation, and offspring cardiometabolic health in early childhood: an epigenome-wide association study. Epigenetics 14(4), 325–340 (2019).
    • 117. Obesity. WHO, Geneva Switzerland (2022).
    • 118. Prevalence of Obesity. World Obesity Federation, London, UK (2022).
    • 119. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 34(1), 11–20 (2022).
    • 120. Guarasci F, D'Aquila P, Mandalà M et al. Aging and nutrition induce tissue-specific changes on global DNA methylation status in rats. Mech. Ageing Dev. 174, 47–54 (2018).
    • 121. Tobi EW, Slieker RC, Luijk R et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 4(1), eaao4364 (2018).
    • 122. Christensen BC, Kelsey KT, Zheng S et al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet. 6(7), e1001043 (2010).
    • 123. Liu C, Marioni RE, Hedman ÅK et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23(2), 422–433 (2018).
    • 124. Ma J, Rebholz CM, Braun KVE et al. Whole blood DNA methylation signatures of diet are associated with cardiovascular disease risk factors and all-cause mortality. Circ. Genom. Precis. Med. 13(4), e002766 (2020).
    • 125. ElGendy K, Malcomson FC, Lara JG, Bradburn DM, Mathers JC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br. J. Nutr. 120(9), 961–976 (2018). • Systematic review of dietary interventions on DNA methylation in adult human tissues.
    • 126. Arpón A, Milagro FI, Razquin C et al. Impact of consuming extra-virgin olive oil or nuts within a Mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-Navarra randomized controlled trial: a role for dietary lipids. Nutrients 10(1), 15 (2017).
    • 127. Perfilyev A, Dahlman I, Gillberg L et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am. J. Clin. Nutr. 105(4), 991–1000 (2017).
    • 128. Samblas M, Mansego ML, Zulet MA, Milagro FI, Martinez JA. An integrated transcriptomic and epigenomic analysis identifies CD44 gene as a potential biomarker for weight loss within an energy-restricted program. Eur. J. Nutr. 58(5), 1971–1980 (2019).
    • 129. Nicoletti CF, Cortes-Oliveira C, Noronha NY et al. DNA methylation pattern changes following a short-term hypocaloric diet in women with obesity. Eur. J. Clin. Nutr. 74(9), 1345–1353 (2020).
    • 130. Keller M, Yaskolka Meir A, Bernhart SH et al. DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: the CENTRAL trial. Genome Med. 12(1), 97 (2020).
    • 131. Aslibekyan S, Demerath EW, Mendelson M et al. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring) 23(7), 1493–1501 (2015).
    • 132. Lai CQ, Parnell LD, Smith CE et al. Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A. Am. J. Clin. Nutr. 112(5), 1200–1211 (2020).
    • 133. Wahl S, Drong A, Lehne B et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541(7635), 81–86 (2017). • Interesting article showing the utility of genomewide methylation analysis to unravel predictors of Type 2 diabetes in obese individuals.
    • 134. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 diabetes – global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 10(1), 107–111 (2020).
    • 135. Raciti GA, Longo M, Parrillo L et al. Understanding Type 2 diabetes: from genetics to epigenetics. Acta Diabetol. 52(5), 821–827 (2015).
    • 136. Juvinao-Quintero DL, Marioni RE, Ochoa-Rosales C et al. DNA methylation of blood cells is associated with prevalent Type 2 diabetes in a meta-analysis of four European cohorts. Clin. Epigenetics 13(1), 40 (2021).
    • 137. Guo W, Zhang Z, Li L et al. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol. Res. 182, 106355 (2022).
    • 138. Assmann TS, Riezu-Boj JI, Milagro FI, Martínez JA. Circulating adiposity-related microRNAs as predictors of the response to a low-fat diet in subjects with obesity. J. Cell. Mol. Med. 24(5), 2956–2967 (2020).
    • 139. Cui J, Zhou B, Ross SA, Zempleni J. Nutrition, microRNAs, and human health. Adv. Nutr. 8(1), 105–112 (2017).
    • 140. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20(11), 675–691 (2019). • Interesting review on circRNAs.
    • 141. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34(8), e63 (2006).
    • 142. Jarlstad Olesen MT, S Kristensen L. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 65(4), 685–696 (2021).
    • 143. Li Q, Geng S, Yuan H et al. Circular RNA expression profiles in extracellular vesicles from the plasma of patients with pancreatic ductal adenocarcinoma. FEBS Open Bio. 9(12), 2052–2062 (2019).
    • 144. Wang Y, Wu C, Du Y et al. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas. Mol. Cancer 21(1), 13 (2022).
    • 145. Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA–protein interactions: functions, mechanisms, and identification. Theranostics 10(8), 3503–3517 (2020).
    • 146. Liu CX, Li X, Nan F et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177(4), 865–880.e21 (2019).
    • 147. Chen X, Zhou M, Yant L, Huang C. Circular RNA in disease: basic properties and biomedical relevance. Wiley Interdiscip. Rev. RNA e1723 (2022).doi:10.1002/wrna.1723 (Epub ahead of print).
    • 148. Zhang Y, Tian Z, Ye H et al. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity. Cell Death Discov. 8(1), 268 (2022).
    • 149. Sun W, Sun X, Chu W, Yu S, Dong F, Xu G. circRNA expression profiles in human visceral preadipocytes and adipocytes. Mol. Med. Rep. 21(2), 815–821 (2020).
    • 150. Wang S, Zhang C, Zhang X. Downregulation of long non-coding RNA ANRIL promotes proliferation and migration in hypoxic human pulmonary artery smooth muscle cells. Mol. Med. Rep. 21(2), 589–596 (2020).
    • 151. Sun W, Sun X, Chu W, Yu S, Dong F, Xu G. circRNA expression profiles in human visceral preadipocytes and adipocytes. Mol. Med. Rep. 21(2), 815–821 (2020).
    • 152. Liu Y, Liu H, Li Y et al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis. Theranostics 10(10), 4705–4719 (2020).
    • 153. Arcinas C, Tan W, Fang W et al. Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis. Nat. Metab. 1(7), 688–703 (2019).
    • 154. Yoon G, Lim YH, Jo D, Ryu J, Song J, Kim YK. Obesity-linked circular RNA circTshz2-2 regulates the neuronal cell cycle and spatial memory in the brain. Mol. Psychiatry 26(11), 6350–6364 (2021).
    • 155. Zhang H, Zhu L, Bai M et al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int. J. Cancer 144(10), 2501–2515 (2019).
    • 156. Zhu Y, Gui W, Lin X, Li H. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1. Exp. Cell Res. 387(2), 111753 (2020).
    • 157. Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin. Med. (Lond) 18(3), 245–250 (2018).
    • 158. Yan L, Chen YG. One ring to rule them all: mitochondrial circular RNAs control mitochondrial function. Cell 183(1), 11–13 (2020).
    • 159. Barrero MJ, Cejas P, Long HW, de Molina AR. Nutritional epigenetics in cancer. Adv. Nutr. 14, nmac039 (2022).
    • 160. Maiuolo J, Gliozzi M, Carresi C et al. Nutraceuticals and cancer: potential for natural polyphenols. Nutrients 13(11), 3834 (2021).
    • 161. Prendeville H, Lynch L. Diet, lipids, and antitumor immunity. Cell. Mol. Immunol. 19(3), 432–444 (2022).
    • 162. Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat. Rev. Cancer 22(8), 452–466 (2022). • Interesting review on potential dietary interventions in cancer therapy.
    • 163. Sapienza C, Issa JP. Diet, nutrition, and cancer epigenetics. Annu. Rev. Nutr. 36, 665–681 (2016).
    • 164. de Assis S, Warri A, Cruz MI et al. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat. Commun. 3, 1053 (2012).
    • 165. Ly A, Lee H, Chen J et al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res. 71(3), 988–997 (2011).
    • 166. Fontelles CC, Carney E, Clarke J et al. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model. Sci. Rep. 6, 28602 (2016).
    • 167. da Cruz RS, Carney EJ, Clarke J et al. Paternal malnutrition programs breast cancer risk and tumor metabolism in offspring. Breast Cancer Res. 20(1), 99 (2018).
    • 168. Duca RB, Massillo C, Dalton GN et al. miR-19b-3p and miR-101-3p as potential biomarkers for prostate cancer diagnosis and prognosis. Am. J. Cancer Res. 11(6), 2802–2820 (2021).
    • 169. Horniblow RD, Pathak P, Balacco DL et al. Iron-mediated epigenetic activation of NRF2 targets. J. Nutr. Biochem. 101, 108929 (2022).
    • 170. Olivo-Marston SE, Hursting SD, Perkins SN et al. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLOS ONE 9(4), e94765 (2014).
    • 171. Boycott C, Beetch M, Yang T et al. Epigenetic aberrations of gene expression in a rat model of hepatocellular carcinoma. Epigenetics 17(11), 1513–1534 (2022).
    • 172. Sun Y, Wang Q, Zhang Y et al. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. J. Hepatol. 73(3), 603–615 (2020).
    • 173. Pascual G, Domínguez D, Elosúa-Bayes M et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 599(7885), 485–490 (2021).
    • 174. Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients 7(2), 922–947 (2015).
    • 175. Abbas A, Witte T, Patterson WL 3rd et al. Epigenetic reprogramming mediated by maternal diet rich in omega-3 fatty acids protects from breast cancer development in F1 offspring. Front. Cell. Dev. Biol. 9, 682593 (2021).
    • 176. Ion G, Akinsete JA, Hardman WE. Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring. BMC Cancer 10, 81 (2010).
    • 177. Li J, Li K, Gao J et al. Maternal exposure to an n-3 polyunsaturated fatty acid diet decreases mammary cancer risk of female offspring in adulthood. Food Funct. 9(11), 5768–5777 (2018).
    • 178. Fontelles CC, Guido LN, Rosim MP et al. Paternal programming of breast cancer risk in daughters in a rat model: opposing effects of animal- and plant-based high-fat diets. Breast Cancer Res. 18(1), 71 (2016).
    • 179. Sie KK, Medline A, van Weel J et al. Effect of maternal and postweaning folic acid supplementation on colorectal cancer risk in the offspring. Gut 60(12), 1687–1694 (2011).
    • 180. Liu M, Ohtani H, Zhou W et al. Vitamin C increases viral mimicry induced by 5-aza-2'-deoxycytidine. Proc. Natl Acad. Sci. USA 113(37), 10238–10244 (2016).
    • 181. Huang Y, Khor TO, Shu L et al. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. J. Nutr. 142(5), 818–823 (2012).
    • 182. Cimmino L, Dolgalev I, Wang Y et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170(6), 1079–1095.e20 (2017).
    • 183. Kanarek N, Petrova B, Sabatini DM. Dietary modifications for enhanced cancer therapy. Nature 579(7800), 507–517 (2020).
    • 184. Richmond JM, Harris JE. Immunology and skin in health and disease. Cold Spring Harb. Perspect. Med. 4(12), a015339 (2014).
    • 185. Rodríguez E, Eyerich K, Weidinger S. Genetik häufiger chronisch-entzündlicher Hauterkrankungen: Ein Update zu atopischem Ekzem und Psoriasis [Genetics of common chronic inflammatory skin diseases: an update on atopic dermatitis and psoriasis]. Hautarzt 62(2), 107–118 (2011).
    • 186. Möbus L, Weidinger S, Emmert H. Epigenetic factors involved in the pathophysiology of inflammatory skin diseases. J. Allergy Clin. Immunol. 145(4), 1049–1060 (2020).
    • 187. Moltrasio C, Romagnuolo M, Marzano AV. Epigenetic mechanisms of epidermal differentiation. Int. J. Mol. Sci. 23(9), 4874 (2022).
    • 188. Hollingsworth JW, Maruoka S, Boon K et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Invest. 126(5), 2012 (2016).
    • 189. Kocic H, Damiani G, Stamenkovic B et al. Dietary compounds as potential modulators of microRNA expression in psoriasis. Ther. Adv. Chronic Dis. 10, 2040622319864805 (2019).
    • 190. Latruffe N, Lançon A, Frazzi R et al. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann. NY Acad. Sci. 1348, 97–106 (2015).
    • 191. Borgia F, Peterle L, Custurone P, Vaccaro M, Pioggia G, Gangemi S. microRNA cross-involvement in acne vulgaris and hidradenitis suppurativa: a literature review. Int. J. Mol. Sci. 23(6), 3241 (2022).
    • 192. Moltrasio C, Tricarico PM, Genovese G, Gratton R, Marzano AV, Crovella S. 25-Hydroxyvitamin D serum levels inversely correlate to disease severity and serum C-reactive protein levels in patients with hidradenitis suppurativa. J. Dermatol. 48(5), 715–717 (2021).
    • 193. Brandao L, Moura R, Tricarico PM et al. Altered keratinization and vitamin D metabolism may be key pathogenetic pathways in syndromic hidradenitis suppurativa: a novel whole exome sequencing approach. J. Dermatol. Sci. 99(1), 17–22 (2020).
    • 194. Van Gronigen Case G, Storey KM, Parmeley LE, Schulz LC. Effects of maternal nutrient restriction during the periconceptional period on placental development in the mouse. PLOS ONE 16(1), e0244971 (2021).
    • 195. Claycombe-Larson KG, Bundy AN, Roemmich JN. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. J. Nutr. Biochem. 81, 108373 (2020).
    • 196. Yajnik CS. Transmission of obesity-adiposity and related disorders from the mother to the baby. Ann. Nutr. Metab. 64(Suppl. 1), S8–S17 (2014).
    • 197. Park JH, Kim SH, Lee MS, Kim MS. Epigenetic modification by dietary factors: implications in metabolic syndrome. Mol. Aspects Med. 54, 58–70 (2017).
    • 198. Klemp I, Hoffmann A, Müller L et al. DNA methylation patterns reflect individual's lifestyle independent of obesity. Clin. Transl. Med. 12(6), e851 (2022).
    • 199. Coppedè F. Targeting the epigenome to treat neurodegenerative diseases or delay their onset: a perspective. Neural Regen. Res. 17(8), 1745–1747 (2022).
    • 200. Vehmeijer FOL, Küpers LK, Sharp GC et al. DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Med. 12(1), 105 (2020).
    • 201. Lauschke VM, Barragan I, Ingelman-Sundberg M. Pharmacoepigenetics and toxicoepigenetics: novel mechanistic insights and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 58, 161–185 (2018).
    • 202. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20(10), 608–624 (2019).
    • 203. Zhong H, Tang HF, Kai Y. N6-methyladenine RNA modification (m6A): an emerging regulator of metabolic diseases. Curr. Drug Targets 21(11), 1056–1067 (2020).