We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Gene regulation in animal miRNA biogenesis

    Zezheng Liu

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Mingshu Wang‡

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Anchun Cheng

    *Author for correspondence:

    E-mail Address: chenganchun@vip.163.com

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Xumin Ou

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Sai Mao

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Qiao Yang

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Ying Wu

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Xin-Xin Zhao

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Juan Huang

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Qun Gao

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Shaqiu Zhang

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Di Sun

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Bin Tian

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Renyong Jia

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Shun Chen

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    ,
    Mafeng Liu

    Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    &
    Dekang Zhu

    Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China

    Published Online:https://doi.org/10.2217/epi-2022-0214

    miRNAs are a class of noncoding RNAs of approximately 19–22 nucleotides that are widely found in animals, plants, bacteria and even viruses. Dysregulation of the expression profile of miRNAs is importantly linked to the development of diseases. Epigenetic modifications regulate gene expression and control cellular phenotypes. Although miRNAs are used as an epigenetic regulation tool, the biogenesis of miRNAs is also regulated by epigenetic events. Here the authors review the mechanisms and roles of epigenetic modification (DNA methylation, histone modifications), RNA modification and ncRNAs in the biogenesis of miRNAs, aiming to deepen the understanding of the miRNA biogenesis regulatory network.

    Plain language summary

    Genes are divided into coding genes and noncoding genes, and people have always focused on coding genes because coding genes guide the synthesis of proteins and proteins are the main bearers of life activities. However, the fact that such important coding genes occupy only 2% of the large human genome shows that noncoding genes are far more complex and important than we think. Through scientific exploration, it has been found that noncoding genes are an important part of gene expression regulation. The end products of noncoding genes, such as miRNAs, also have their own expression patterns at different stages of the body's development, and an imbalance in expression patterns often causes various diseases. There are multiple levels of gene expression regulation during noncoding RNAs biogenesis, and this paper fully reviews the role and the mechanisms of gene expression regulation in miRNA biogenesis. Familiarity with gene expression regulation in miRNA biogenesis is important to understand the mechanisms of dysregulation of miRNA expression profiles in diseases and the treatments employed.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Bartel D. microRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004).
    • 2. Gong H, Vu GP, Bai Y et al. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLOS Pathog. 7(9), e1002120(2011).
    • 3. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993).
    • 4. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5), 855–862 (1993).
    • 5. Waddington CH. The epigenotype. 1942. Int. J. Epidemiol. 41(1), 10–13 (2012).
    • 6. Bird A. Perceptions of epigenetics. Nature 447(7143), 396–398 (2007).
    • 7. Xu Z, Sandler DP, Taylor JA. Blood DNA methylation and breast cancer: a prospective case–cohort analysis in the Sister Study. J. Natl Cancer Inst. 112(1), 87–94 (2020).
    • 8. Martins de Carvalho L, Chen WY, Lasek AW. Epigenetic mechanisms underlying stress-induced depression. Int. Rev. Neurobiol. 156, 87–126 (2021).
    • 9. Kogo R, Shimamura T, Mimori K et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71(20), 6320–6326 (2011).
    • 10. Chen R, Gan Q, Zhao S et al. DNA methylation of miR-138 regulates cell proliferation and EMT in cervical cancer by targeting EZH2. BMC Cancer 22(1), 488 (2022).
    • 11. Tammen SA, Friso S, Choi S-W. Epigenetics: the link between nature and nurture. Mol. Aspects Med. 34(4), 753–764 (2013).
    • 12. Boccaletto P, Machnicka MA, Purta E et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46(D1), D303–D307 (2018).
    • 13. Jia G, Fu Y, Zhao X et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7(12), 885–887 (2011).
    • 14. Willyard C. A new twist on epigenetics. Nature 542(7642), 406–408 (2017).
    • 15. Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 17(6), 365–372 (2016).
    • 16. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47(D1), D155–D162 (2019).
    • 17. Ozsolak F, Poling LL, Wang Z et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 22(22), 3172–3183 (2008).
    • 18. Monteys AM, Spengler RM, Wan J et al. Structure and activity of putative intronic miRNA promoters. RNA 16(3), 495–505 (2010).
    • 19. Dhir A, Dhir S, Proudfoot NJ, Jopling CL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat. Struct. Mol. Biol. 22(4), 319–327 (2015).
    • 20. Altuvia Y, Landgraf P, Lithwick G et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33(8), 2697–2706 (2005).
    • 21. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12), 1957–1966 (2004).
    • 22. Nguyen TA, Jo MH, Choi YG et al. Functional anatomy of the human microprocessor. Cell 161(6), 1374–1387 (2015).
    • 23. Han J, Lee Y, Yeom K-H et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125(5), 887–901 (2006).
    • 24. Yamazawa R, Jiko C, Choi S et al. Structural basis for selective binding of export cargoes by exportin-5. Structure 26(10), 1393–1398.e2 (2018).
    • 25. Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J. Cell Biol. 145(4), 645–657 (1999).
    • 26. Song MS, Rossi JJ. Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem. J. 474(10), 1603–1618 (2017).
    • 27. MacRae IJ, Zhou K, Li F et al. Structural basis for double-stranded RNA processing by Dicer. Science 311(5758), 195–198 (2006).
    • 28. Wu J, Yang J, Cho WC, Zheng Y. Argonaute proteins: structural features, functions and emerging roles. J. Adv. Res. 24, 317–324 (2020).
    • 29. Iwasaki S, Kobayashi M, Yoda M et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39(2), 292–299 (2010).
    • 30. Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded Argonaute complexes and microscopic P-bodies in human cells. Mol. Biol. Cell 21(9), 1462–1469 (2010).
    • 31. Miyoshi T, Takeuchi A, Siomi H, Siomi MC. A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat. Struct. Mol. Biol. 18(4), 516 (2011).
    • 32. Iwasaki S, Sasaki HM, Sakaguchi Y, Suzuki T, Tadakuma H, Tomari Y. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521(7553), 533–536 (2015).
    • 33. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2), 199–208 (2003).
    • 34. Saliminejad K, Khorshid HRK, Fard SS, Ghaffari S. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 234(5), 5451–5465 (2019).
    • 35. Shukla G, Singh J, Barik S. microRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell. Pharmacol. 3(3), 83–92 (2011).
    • 36. Brummer A, Hausser J. microRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays 36(6), 617–626 (2014).
    • 37. Gerresheim GK, Dunnes N, Nieder-Rohrmann A et al. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3′ untranslated region: function in replication and influence of RNA secondary structure. Cell. Mol. Life Sci. 74(4), 747–760 (2017).
    • 38. Biegel JM, Henderson E, Cox EM et al. Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5′ untranslated region of hepatitis C virus RNA. Virology 507, 231–241 (2017).
    • 39. Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. microRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer 47(2), 163–174 (2011).
    • 40. Rao X, Di Leva G, Li M et al. microRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 30(9), 1082–1097 (2011).
    • 41. Li Y, Huang J, Guo M, Zuo X. microRNAs regulating signaling pathways: potential biomarkers in systemic sclerosis. Genomics Proteomics Bioinformatics 13(4), 234–241 (2015).
    • 42. Yu MM, Xu Y, Pan LL et al. miR-10b downregulated by DNA methylation acts as a tumor suppressor in HPV-positive cervical cancer via targeting Tiam 1. Cell. Physiol. Biochem. 51(4), 1763–1777 (2018).
    • 43. Abisoye-Ogunniyan A, Lin H, Ghebremedhin A et al. Transcriptional repressor Kaiso promotes epithelial to mesenchymal transition and metastasis in prostate cancer through direct regulation of miR-200c. Cancer Lett. 431, 1–10 (2018).
    • 44. Liu K, Xu C, Lei M et al. Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J. Biol. Chem. 293(19), 7344–7354 (2018).
    • 45. Filion GJP, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez P-A. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 26(1), 169–181 (2006).
    • 46. Bell RE, Golan T, Sheinboim D et al. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res. 26(5), 601–611 (2016).
    • 47. Zhang JK, Li YS, Zhang CD, Dai DQ. Upregulation of CRKL by microRNA-335 methylation is associated with poor prognosis in gastric cancer. Cancer Cell Int. 17, 28 (2017).
    • 48. Fu Q, Shi H, Chen C. Roles of bta-miR-29b promoter regions DNA methylation in regulating miR-29b expression and bovine viral diarrhea virus NADL replication in MDBK cells. Arch. Virol. 162(2), 401–408 (2017).
    • 49. Periyasamy P, Thangaraj A, Guo ML, Hu GK, Callen S, Buch S. Epigenetic promoter DNA methylation of miR-124 promotes HIV-1 Tat-mediated microglial activation via MECP2-STAT3 axis. J. Neurosci. 38(23), S367–S383 (2018).
    • 50. Glaich O, Parikh S, Bell RE et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat. Commun. 10(1), 5657 (2019). •• MECP2 binding to methylated miRNA loci halts RNA Pol II elongation, leading to enhanced processing of pri-miRNA by Drosha.
    • 51. Shukla S, Kavak E, Gregory M et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479(7371), 74–79 (2011).
    • 52. Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MECP2 to promote exon recognition. Cell Res. 23(11), 1256–1269 (2013).
    • 53. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648), 251–260 (1997).
    • 54. Oudet P, Gross-Bellard M, Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4(4), 281–300 (1975).
    • 55. Allan J, Hartman PG, Crane-Robinson C, Aviles FX. The structure of histone H1 and its location in chromatin. Nature 288(5792), 675–679 (1980).
    • 56. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13(5), 343–357 (2012).
    • 57. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762), 844–847 (2006).
    • 58. Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD, Workman JL. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15(10), 2508–2518 (1996).
    • 59. Huang G, Zhang G, Yu Z. Computational prediction and analysis of histone H3k27me1-associated miRNAs. Biochim. Biophys. Acta Proteins Proteom. 1869(1), 140539 (2021).
    • 60. Jing PY, Zhao N, Ye MX et al. Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling. Cancer Lett. 427, 38–48 (2018).
    • 61. Du C, Lv CH, Feng Y, Yu SW. Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J. Exp. Clin. Cancer Res. 39(1), (2020).
    • 62. Cai H, An Y, Chen X et al. Epigenetic inhibition of miR-663b by long non-coding RNA HOTAIR promotes pancreatic cancer cell proliferation via upregulation of insulin-like growth factor 2. Oncotarget 7(52), 86857–86870 (2016).
    • 63. Ding S, Zhang Q, Luo S et al. BCL-6 suppresses miR-142-3p/5p expression in SLE CD4(+) T cells by modulating histone methylation and acetylation of the miR-142 promoter. Cell. Mol. Immunol. 17(5), 474–482 (2020).
    • 64. Zhou MR, Zeng JP, Wang XM et al. Histone demethylase RBP2 decreases miR-21 in blast crisis of chronic myeloid leukemia. Oncotarget 6(2), 1249–1261 (2015).
    • 65. Karkhanis V, Alinari L, Ozer HG et al. Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that downregulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. J. Biol. Chem. 295(5), 1165–1180 (2020).
    • 66. Zhang Q, Xu L, Wang JJ et al. KDM5C expedites lung cancer growth and metastasis through epigenetic regulation of microRNA-133a. Onco Targets Ther. 14, 1187–1204 (2021).
    • 67. Zhang S, Chen P, Huang ZA et al. Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a. Sci. Rep. 5, 9787 (2015).
    • 68. Wu R, Zeng J, Yuan J et al. microRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Investig. 128(6), 2551–2568 (2018).
    • 69. Zhu J, Han S. Histone deacetylase 10 exerts anti-tumor effects on cervical cancer via a novel microRNA-223/TXNIP/Wnt/beta-catenin pathway. IUBMB Life doi: 10.1002/iub.2448 (2021) (Epub ahead of print).
    • 70. Peng XL, Chang H, Gu YY et al. 3,6-dihydroxyflavone suppresses breast carcinogenesis by epigenetically regulating miR-34a and miR-21. Cancer Prev. Res. (Phila.) 8(6), 509–517 (2015).
    • 71. Zhu H, Wang C. HDAC2-mediated proliferation of trophoblast cells requires the miR-183/FOXA1/IL-8 signaling pathway. J. Cell. Physiol. 236(4), 2544–2558 (2021).
    • 72. Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15(11), 703–708 (2014).
    • 73. Handa H, Hashimoto A, Hashimoto S, Sugino H, Oikawa T, Sabe H. Epithelial-specific histone modification of the miR-96/182 locus targeting AMAP1 mRNA predisposes p53 to suppress cell invasion in epithelial cells. Cell Commun. Signal. 16(1), 94 (2018). • Histone modifications of certain miRNA loci are different between epithelial cells and nonepithelial cells.
    • 74. Li Y, Li H, Zhou L. EZH2-mediated H3K27me3 inhibits ACE2 expression. Biochem. Biophys. Res. Commun. 526(4), 947–952 (2020).
    • 75. Yu J, Wang L, Pei P et al. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects. Epigenetics Chromatin 12(1), 76 (2019).
    • 76. Zhang B, Zheng H, Huang B et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537(7621), 553–557 (2016).
    • 77. Clouaire T, Webb S, Skene P et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 26(15), 1714–1728 (2012).
    • 78. Hu D, Gao X, Cao K et al. Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specification. Mol. Cell 65(3), 460–475.e6 (2017).
    • 79. Douillet D, Sze CC, Ryan C et al. Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat. Genet. 52(6), 615–625 (2020). •• MLL2-mediated H3K4me3 modification regulates target gene expression by antagonizing H3K27me3 and DNA methylation.
    • 80. Tate CM, Lee JH, Skalnik DG. CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J. 277(1), 210–223 (2010).
    • 81. Carlone DL, Lee JH, Young SR et al. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol. Cell. Biol. 25(12), 4881–4891 (2005).
    • 82. Ning X, Shi Z, Liu X et al. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 359(2), 198–205 (2015).
    • 83. Hu Y, Wu F, Liu Y, Zhao Q, Tang H. DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A. Clin. Epigenetics 11(1), 186 (2019).
    • 84. Willyard C. An epigenetics gold rush: new controls for gene expression. Nature 542(7642), 406–408 (2017).
    • 85. Xhemalce B, Robson SC, Kouzarides T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151(2), 278–288 (2012).
    • 86. Pandolfini L, Barbieri I, Bannister AJ et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol. Cell 74(6), 1278–1290.e9 (2019). •• m7G promotes processing by antagonizing G-quadruplex structures in miRNA precursors.
    • 87. Zhao LY, Song J, Liu Y, Song CX, Yi C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell 11(11), 792–808 (2020).
    • 88. Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horsthemke B. N6-adenosine methylation in miRNAs. PLOS ONE 10(2), e0118438 (2015).
    • 89. Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 519(7544), 482–485 (2015).
    • 90. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162(6), 1299–1308 (2015).
    • 91. Wang H, Deng Q, Lv Z et al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol. Cancer 18(1), 181 (2019).
    • 92. Han J, Wang J-Z, Yang X et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer 18(1), 110 (2019).
    • 93. Zhang J, Bai R, Li M et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun. 10(1), 1858 (2019).
    • 94. Xu K, Mo Y, Li D et al. N-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia–reperfusion injury. Ther. Adv. Chronic Dis. 11, 2040622320916024 (2020).
    • 95. Wang P, Wang ZW, Zhang M, Wu Q, Shi F, Yuan S. KIAA1429 and ALKBH5 oppositely influence aortic dissection progression via regulating the maturation of pri-miR-143-3p in an m6A-dependent manner. Front. Cell Dev. Biol. 9, 668377 (2021).
    • 96. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15(5), 293–306 (2014).
    • 97. Wang X, Lu Z, Gomez A et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481), 117–120 (2014).
    • 98. Chaulk SG, Thede GL, Kent OA et al. Role of pri-miRNA tertiary structure in miR-17∼92 miRNA biogenesis. RNA Biol. 8(6), 1105–1114 (2011).
    • 99. Zhao H, Li J, Yan X, Bian X. lncRNA MAFG-AS1 suppresses the maturation of miR-34a to promote glioblastoma cell proliferation. Cancer Manag. Res. 13, 3493–3501 (2021).
    • 100. Han K, Wang FW, Cao CH et al. circLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol. Cancer 19(1), 60 (2020).
    • 101. Yu Y, Nangia-Makker P, Farhana L, Majumdar APN. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol. Cancer 16(1), 155 (2017).
    • 102. Liz J, Portela A, Soler M et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol. Cell 55(1), 138–147 (2014).
    • 103. Tian T, Lv XB, Pan GK et al. Long noncoding RNA MPRL promotes mitochondrial fission and cisplatin chemosensitivity via disruption of pre-miRNA processing. Clin. Cancer Res. 25(12), 3673–3688 (2019).
    • 104. Li YZ, Song Y, Wang ZH, Zhang ZY, Lu MM, Wang YX. Long non-coding RNA LINC01787 drives breast cancer progression via disrupting miR-125b generation. Front. Oncol. 5(9), 1140 (2019).
    • 105. Ahn J-H, Lee H-S, Lee J-S et al. nc886 is induced by TGF-β and suppresses the microRNA pathway in ovarian cancer. Nat. Commun. 9(1), 1166 (2018).
    • 106. Tang R, Li L, Zhu D et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 22(3), 504–515 (2012).
    • 107. Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486(7404), 541–544 (2012).
    • 108. Wang D, Sun X, Wei Y et al. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res. 46(4), 2012–2029 (2018). •• First evidence that miR-122 promotes hepatocellular carcinoma cell apoptosis by directly silencing the biogenesis of cell survival oncomiR miR-21 at a post-transcriptional level.
    • 109. Földes-Papp Z, König K, Studier H et al. Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr. Pharm. Biotechnol. 10(6), 569–578 (2009).
    • 110. Tseng C-F, Chen L-T, Wang H-D, Liu Y-H, Shiah S-G. Transcriptional suppression of Dicer by HOXB-AS3/EZH2 complex dictates sorafenib resistance and cancer stemness. Cancer Sci. 113(5), 1601–1612 (2022).
    • 111. Leaderer D, Hoffman AE, Zheng T et al. Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int. J. Mol. Epidemiol. Genet. 2(1), 9–18 (2011).
    • 112. Hoffend NC, Magner WJ, Tomasi TB. The epigenetic regulation of Dicer and microRNA biogenesis by panobinostat. Epigenetics 12(2), 105–112 (2017).
    • 113. van den Beucken T, Koch E, Chu K et al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat. Commun. 5, 5203 (2014).
    • 114. Peng F, Xu J, Cui B et al. Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 31(3), 345–361 (2021).
    • 115. Min KW, Zealy RW, Davila S et al. Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. Aging Cell 17(3), e12753 (2018).
    • 116. Dong JS, Wu B, Chen XH. circPSMC3 inhibits prostate cancer cell proliferation by downregulating DGCR8. Eur. Rev. Med. Pharmacol. Sci. 24(5), 2264–2270 (2020).
    • 117. Frixa T, Sacconi A, Cioce M et al. microRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis 39(2), 293–304 (2018). • miR-128-3p causes extensive downregulation of miRNA expression by targeting Drosha and Dicer, two key enzymes in miRNA processing.
    • 118. Martello G, Rosato A, Ferrari F et al. A microRNA targeting Dicer for metastasis control. Cell 141(7), 1195–1207 (2010).
    • 119. Paraskevopoulou MD, Georgakilas G, Kostoulas N et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 41(Web Server issue), W169–W173 (2013).
    • 120. Mechtler P, Johnson S, Slabodkin H, Cohanim AB, Brodsky L, Kandel ES. The evidence for a microRNA product of human DROSHA gene. RNA Biol. 14(11), 1508–1513 (2017).
    • 121. Bosia C, Osella M, Baroudi ME, Cora D, Caselle M. Gene autoregulation via intronic microRNAs and its functions. BMC Syst. Biol. 6, 131 (2012).
    • 122. Redis RS, Vela LE, Lu W et al. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol. Cell 61(4), 520–534 (2016).
    • 123. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: moving from bench to clinic as next-generation medicine. Mol. Ther. Nucleic Acids 8, 132–143 (2017).
    • 124. Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J. Plant Pathol. 226(2), 365–379 (2012).
    • 125. Baretti M, Azad NS. The role of epigenetic therapies in colorectal cancer. Curr. Probl. Cancer 42(6), 530–547 (2018).
    • 126. Lujambio A, Ropero S, Ballestar E et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67(4), 1424–1429 (2007).
    • 127. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 66(3), 1277–1281 (2006).