We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Integration of DNA methylation & health scores identifies subtypes in myalgic encephalomyelitis/chronic fatigue syndrome

    Wilfred C de Vega

    Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada

    Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada

    ,
    Lauren Erdman

    Department of Computer Science, University of Toronto, Toronto, Ontario, Canada

    Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada

    ,
    Suzanne D Vernon

    The Bateman Horne Center of Excellence, Salt Lake City, UT 84102, USA

    ,
    Anna Goldenberg

    Department of Computer Science, University of Toronto, Toronto, Ontario, Canada

    Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada

    &
    Patrick O McGowan

    *Author for correspondence:

    E-mail Address: patrick.mcgowan@utoronto.ca

    Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada

    Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada

    Department of Psychology, University of Toronto, Toronto, Ontario, Canada

    Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada

    Published Online:https://doi.org/10.2217/epi-2017-0150

    Aim: To identify subtypes in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) based on DNA methylation profiles and health scores. Methods: DNA methylome profiles in immune cells were integrated with symptomatology from 70 women with ME/CFS using similarity network fusion to identify subtypes. Results: We discovered four ME/CFS subtypes associated with DNA methylation modifications in 1939 CpG sites, three RAND-36 categories and five DePaul Symptom Questionnaire measures. Methylation patterns of immune response genes and differences in physical functioning and postexertional malaise differentiated the subtypes. Conclusion: ME/CFS subtypes are associated with specific DNA methylation differences and health symptomatology and provide additional evidence of the potential relevance of metabolic and immune differences in ME/CFS with respect to specific symptoms.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Jason LA, Porter N, Hunnell J, Rademaker A, Richman JA. CFS prevalence and risk factors over time. J. Health Psychol. 16(3), 445–456 (2011).
    • 2 Reyes M, Nisenbaum R, Hoaglin DC et al. Prevalence and incidence of chronic fatigue syndrome in Wichita, Kansas. Arch. Intern. Med. 163(13), 1530–1536 (2003).
    • 3 Brown MM, Bell DS, Jason LA, Christos C, Bell DE. Understanding long-term outcomes of chronic fatigue syndrome. J. Clin. Psychol. 68(9), 1028–1035 (2012).
    • 4 Johnston SC, Brenu EW, Hardcastle SL, Huth TK, Staines DR, Marshall-Gradisnik SM. A comparison of health status in patients meeting alternative definitions for chronic fatigue syndrome/myalgic encephalomyelitis. Health Qual. Life Outcomes 12, 64 (2014).
    • 5 Hatcher S, House A. Life events, difficulties and dilemmas in the onset of chronic fatigue syndrome: a case–control study. Psychol. Med. 33(7), 1185–1192 (2003).
    • 6 Lin JS, Resch SC, Brimmer DJ et al. The economic impact of chronic fatigue syndrome in Georgia: direct and indirect costs. Cost Eff. Resour. Alloc. 9(1), 1 (2011).
    • 7 Reynolds KJ, Vernon SD, Bouchery E, Reeves WC. The economic impact of chronic fatigue syndrome. Cost Eff. Resour. Alloc. 2(1), 4 (2004).
    • 8 Jones JF, Lin JM, Maloney EM et al. An evaluation of exclusionary medical/psychiatric conditions in the definition of chronic fatigue syndrome. BMC Med. 7, 57 (2009).
    • 9 Nater UM, Lin JM, Maloney EM et al. Psychiatric comorbidity in persons with chronic fatigue syndrome identified from the Georgia population. Psychosom. Med. 71(5), 557–565 (2009).
    • 10 Carruthers BM, Van De Sande MI, De Meirleir KL et al. Myalgic encephalomyelitis: international consensus criteria. J. Intern. Med. 270(4), 327–338 (2011).
    • 11 Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 121(12), 953–959 (1994).
    • 12 Jason LA, Richman JA, Rademaker AW et al. A community-based study of chronic fatigue syndrome. Arch. Intern. Med. 159(18), 2129–2137 (1999).
    • 13 Bansal AS, Bradley AS, Bishop KN, Kiani-Alikhan S, Ford B. Chronic fatigue syndrome, the immune system and viral infection. Brain Behav. Immun. 26(1), 24–31 (2012).
    • 14 De Vega WC, Herrera S, Vernon SD, McGowan PO. Epigenetic modifications and glucocorticoid sensitivity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). BMC Med. Genomics 10(1), 11 (2017). •• Describes immune sensitivity differences and potential epigenetic biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) diagnosis.
    • 15 De Vega WC, Vernon SD, McGowan PO. DNA methylation modifications associated with chronic fatigue syndrome. PLoS ONE 9(8), e104757 (2014). • First DNA methylome study of peripheral blood mononuclear cells in ME/CFS, where immune cell regulation genes were shown to be significantly enriched in DNA methylation differences.
    • 16 Naviaux RK, Naviaux JC, Li K et al. Metabolic features of chronic fatigue syndrome. Proc. Natl Acad. Sci. USA 113(37), e5472–e5480 (2016).
    • 17 Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human complex diseases: recent accomplishments and future perspectives. Eur. J. Hum. Genet. 21(2), 134–142 (2013).
    • 18 Stessman HA, Bernier R, Eichler EE. A genotype-first approach to defining the subtypes of a complex disease. Cell 156(5), 872–877 (2014).
    • 19 Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13(7), 484–492 (2012).
    • 20 Lam LL, Emberly E, Fraser HB et al. Factors underlying variable DNA methylation in a human community cohort. Proc. Natl Acad. Sci. USA 109(Suppl. 2), 17253–17260 (2012).
    • 21 Ernst C, McGowan PO, Deleva V, Meaney MJ, Szyf M, Turecki G. The effects of pH on DNA methylation state: in vitro and post-mortem brain studies. J. Neurosci. Methods 174(1), 123–125 (2008).
    • 22 Vilahur N, Baccarelli AA, Bustamante M et al. Storage conditions and stability of global DNA methylation in placental tissue. Epigenomics 5(3), 341–348 (2013).
    • 23 Hebels DG, Georgiadis P, Keun HC et al. Performance in omics analyses of blood samples in long-term storage: opportunities for the exploitation of existing biobanks in environmental health research. Environ. Health Perspect. 121(4), 480–487 (2013).
    • 24 Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol. Biotechnol. 44(1), 71–81 (2010).
    • 25 Kerr JR, Petty R, Burke B et al. Gene expression subtypes in patients with chronic fatigue syndrome/myalgic encephalomyelitis. J. Infect. Dis. 197(8), 1171–1184 (2008). • ME/CFS subtyping study based on gene expression profiles.
    • 26 Zhang L, Gough J, Christmas D et al. Microbial infections in eight genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis. J. Clin. Pathol. 63(2), 156–164 (2010).
    • 27 Shimosako N, Kerr JR. Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Clin. Pathol. 67(12), 1078–1083 (2014). • SNP validation of ME/CFS subtypes that were based on gene expression profiles.
    • 28 Aslakson E, Vollmer-Conna U, White PD. The validity of an empirical delineation of heterogeneity in chronic unexplained fatigue. Pharmacogenomics 7(3), 365–373 (2006).
    • 29 Vollmer-Conna U, Aslakson E, White PD. An empirical delineation of the heterogeneity of chronic unexplained fatigue in women. Pharmacogenomics 7(3), 355–364 (2006). • ME/CFS subtyping study based on clinical measures of a hospital cohort.
    • 30 Aslakson E, Vollmer-Conna U, Reeves WC, White PD. Replication of an empirical approach to delineate the heterogeneity of chronic unexplained fatigue. Popul. Health Metr. 7, 17 (2009).
    • 31 Wang B, Mezlini AM, Demir F et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11(3), 333–337 (2014). •• Description of similarity network fusion method to identify subtypes based on an integration of biological and clinical data.
    • 32 Xu T, Le TD, Liu L, Wang R, Sun B, Li J. Identifying cancer subtypes from miRNA-TF-mRNA regulatory networks and expression data. PLoS ONE 11(4), e0152792 (2016).
    • 33 Zhang D, Chen P, Zheng CH, Xia J. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach. Oncotarget 7(4), 4298–4309 (2016).
    • 34 Wen H, Liu Y, Rekik I et al. Combining disrupted and discriminative topological properties of functional connectivity networks as neuroimaging biomarkers for accurate diagnosis of early Tourette syndrome children. Mol. Neurobiol. 55(4), 3251–3269 (2017).
    • 35 Jason LA, So S, Brown AA, Sunnquist M, Evans M. Test-retest reliability of the DePaul symptom questionnaire. Fatigue 3(1), 16–32 (2015).
    • 36 De Vega WC, McGowan PO. The epigenetic landscape of myalgic encephalomyelitis/chronic fatigue syndrome: deciphering complex phenotypes. Epigenomics 9(11), 1337–1340 (2017).
    • 37 Hays RD, Morales LS. The RAND-36 measure of health-related quality of life. Ann. Med. 33(5), 350–357 (2001).
    • 38 Wang D, Yan L, Hu Q et al. IMA: an R package for high-throughput analysis of Illumina's 450 K Infinium methylation data. Bioinformatics 28(5), 729–730 (2012).
    • 39 Aryee MJ, Jaffe AE, Corrada-Bravo H et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30(10), 1363–1369 (2014).
    • 40 Maksimovic J, Gordon L, Oshlack A. SWAN: subset-quantile within array normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 13(6), R44 (2012).
    • 41 Sandoval J, Heyn H, Moran S et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6(6), 692–702 (2011).
    • 42 Houseman EA, Accomando WP, Koestler DC et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).
    • 43 Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1), 118–127 (2007).
    • 44 Dick KJ, Nelson CP, Tsaprouni L et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet 383(9933), 1990–1998 (2014).
    • 45 Fraga MF, Ballestar E, Paz MF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102(30), 10604–10609 (2005).
    • 46 Chen YA, Lemire M, Choufani S et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8(2), 203–209 (2013).
    • 47 Morris TJ, Beck S. Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450 k) data. Methods 72, 3–8 (2015).
    • 48 Achard S, Delon-Martin C, Vertes PE et al. Hubs of brain functional networks are radically reorganized in comatose patients. Proc. Natl Acad. Sci. USA 109(50), 20608–20613 (2012).
    • 49 Shiga M, Takigawa I, Mamitsuka H. Annotating gene function by combining expression data with a modular gene network. Bioinformatics 23(13), i468–i478 (2007).
    • 50 Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102(43), 15545–15550 (2005).
    • 51 Buchwald D, Garrity D. Comparison of patients with chronic fatigue syndrome, fibromyalgia, and multiple chemical sensitivities. Arch. Intern. Med. 154(18), 2049–2053 (1994).
    • 52 Meeus M, Nijs J. Central sensitization: a biopsychosocial explanation for chronic widespread pain in patients with fibromyalgia and chronic fatigue syndrome. Clin. Rheumatol. 26(4), 465–473 (2007).
    • 53 Johnson SK, Deluca J, Natelson BH. Personality dimensions in the chronic fatigue syndrome: a comparison with multiple sclerosis and depression. J. Psychiatr. Res. 30(1), 9–20 (1996).
    • 54 Dancey CP, Friend J. Symptoms, impairment and illness intrusiveness – their relationship with depression in women with CFS/ME. Psychol. Health 23(8), 983–999 (2008).
    • 55 Maes M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr. Opin. Psychiatry 22(1), 75–83 (2009).
    • 56 Van De Vosse E, Haverkamp MH, Ramirez-Alejo N et al. IL-12Rβ1 deficiency: mutation update and description of the IL12RB1 variation database. Hum. Mutat. 34(10), 1329–1339 (2013).
    • 57 Brenu EW, Staines DR, Marshall-Gradisbik SM. Methylation profile of CD4+ T cells in chronic fatigue syndrome/myalgic encephalomyelitis. J. Clin. Cell Immunol. 5, 228 (2014).
    • 58 Morris G, Berk M, Galecki P, Maes M. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Mol. Neurobiol. 49(2), 741–756 (2014).
    • 59 Loebel M, Strohschein K, Giannini C et al. Deficient EBV-specific B- and T-cell response in patients with chronic fatigue syndrome. PLoS ONE 9(1), e85387 (2014).
    • 60 Mensah F, Bansal A, Berkovitz S et al. Extended B cell phenotype in patients with myalgic encephalomyelitis/chronic fatigue syndrome: a cross-sectional study. Clin. Exp. Immunol. 184(2), 237–247 (2016).
    • 61 Bradley AS, Ford B, Bansal AS. Altered functional B cell subset populations in patients with chronic fatigue syndrome compared with healthy controls. Clin. Exp. Immunol. 172(1), 73–80 (2013).
    • 62 Fluge O, Bruland O, Risa K et al. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PLoS ONE 6(10), e26358 (2011).
    • 63 Gaunt TR, Shihab HA, Hemani G et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 17, 61 (2016).
    • 64 McRae AF, Powell JE, Henders AK et al. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 15(5), R73 (2014).
    • 65 Dowsett EG, Ramsay AM, McCartney RA, Bell EJ. Myalgic encephalomyelitis – a persistent enteroviral infection? Postgrad. Med. J. 66(777), 526–530 (1990).
    • 66 Twisk FNM. An accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome requires strict clinical case definitions and objective test methods. J. Med. Diagnost. Methods 5(2), 68–87 (2017).
    • 67 Irlbeck DM, Vernon SD, McCleary KK et al. No association found between the detection of either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus and chronic fatigue syndrome in a blinded, multi-site, prospective study by the establishment and use of the SolveCFS BioBank. BMC Res. Notes 7, 461 (2014).
    • 68 Whistler T, Taylor R, Craddock RC, Broderick G, Klimas N, Unger ER. Gene expression correlates of unexplained fatigue. Pharmacogenomics 7(3), 395–405 (2006).
    • 69 Vgontzas AN, Papanicolaou DA, Bixler EO et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J. Clin. Endocrinol. Metab. 85(3), 1151–1158 (2000).
    • 70 Smith AK, Kilaru V, Klengel T et al. DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168b(1), 36–44 (2015).
    • 71 Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18(9), 551–562 (2017).
    • 72 Lenzenweger MF. Endophenotype, intermediate phenotype, biomarker: definitions, concept comparisons, clarifications. Depress. Anxiety 30(3), 185–189 (2013).
    • 73 Hallmayer JF, Kalaydjieva L, Badcock J et al. Genetic evidence for a distinct subtype of schizophrenia characterized by pervasive cognitive deficit. Am. J. Hum. Genet. 77(3), 468–476 (2005).
    • 74 Morar B, Dragovic M, Waters FA, Chandler D, Kalaydjieva L, Jablensky A. Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition. Mol. Psychiatry 16(8), 860–866 (2011).
    • 75 Peter B, Matsushita M, Raskind WH. Motor sequencing deficit as an endophenotype of speech sound disorder: a genome-wide linkage analysis in a multigenerational family. Psychiatr. Genet. 22(5), 226–234 (2012).
    • 76 Mcmanimen SL, Jason LA. Post-exertional malaise in patients with ME and CFS with comorbid fibromyalgia. SRL Neurol. Neurosurg. 3(1), 22–27 (2017).
    • 77 White AT, Light AR, Hughen RW, Vanhaitsma TA, Light KC. Differences in metabolite-detecting, adrenergic, and immune gene expression after moderate exercise in patients with chronic fatigue syndrome, patients with multiple sclerosis, and healthy controls. Psychosom. Med. 74(1), 46–54 (2012).