We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Intergenic and intronic DNA hypomethylated regions as putative regulators of imprinted domains

    Arundhati Bakshi

    Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

    ,
    Corey L Bretz

    Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

    ,
    Terri L Cain

    Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

    &
    Joomyeong Kim

    *Author for correspondence: Tel.: +1 225 578 7692; Fax: +1 225 578 2597;

    E-mail Address: jkim@lsu.edu

    Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

    Published Online:https://doi.org/10.2217/epi-2017-0125

    Aim: To investigate the regulatory potential of intergenic/intronic hypomethylated regions (iHMRs) within imprinted domains. Materials & methods: Based on the preliminary results of the histone modification and conservation profiles, we conducted reporter assays on the Peg3 and H19 domain iHMRs. The in vitro results were confirmed by the in vivo deletion of Peg3-iHMR designed to test its function in the Peg3 imprinted domain. Results & conclusion: Initial bioinformatic analyses suggested that some iHMRs may be noncanonical enhancers for imprinted genes. Consistent with this, Peg3- and H19-iHMRs showed context-dependent promoter and enhancer activity. Further, deletion of Peg3-iHMR resulted in allele- and sex-specific misregulation of several imprinted genes within the domain. Taken together, these results suggest that some iHMRs may function as domain-wide regulators for the associated imprinted domains.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6(2), pii:a018382 (2014). •• An excellent review summarizing our current knowledge about genomic imprinting and future directions for the field.
    • 2 Kim J, Bretz CL, Lee S. Epigenetic instability of imprinted genes in human cancers. Nucleic Acids Res. 43(22), 10689–10699 (2015).
    • 3 Bretz CL, Langohr IM, Lee S, Kim J. Epigenetic instability at imprinting control regions in a Kras(G12D)-induced T-cell neoplasm. Epigenetics 10(12), 1111–1120 (2015).
    • 4 Kelsey G, Bartolomei MS. Imprinted genes … and the number is? PLoS Genet. 8(3), e1002601 (2012).
    • 5 He H, Kim J. Regulation and function of the Peg3 imprinted domain. Genomics Inform. 12(3), 105–113 (2014).
    • 6 Su AI, Wiltshire T, Batalov S et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101(16), 6062–6067 (2004).
    • 7 Barlow DP. Genomic imprinting: a mammalian epigenetic discovery model. Annu. Rev. Genet. 45, 379–403 (2011).
    • 8 Kim J, Ye A. Phylogenetic and epigenetic footprinting of the putative enhancers of the Peg3 domain. PLoS ONE 11(4), e0154216 (2016). • Bioinformatic analyses and MYOD-chromatin immunoprecipitation for ECR18 (and other ECRs) in Peg3 domain.
    • 9 Thiaville MM, Kim H, Frey WD, Kim J. Identification of an evolutionarily conserved cis-regulatory element controlling the Peg3 imprinted domain. PLoS ONE 8(9), e75417 (2013). • Initial description of Peg3-ECR18 as a putative enhancer for Peg3 domain.
    • 10 Rogers ED, Ramalie JR, McMurray EN, Schmidt JV. Localizing transcriptional regulatory elements at the mouse Dlk1 locus. PLoS ONE 7(5), e36483 (2012). • Initial description of the Dlk1-HMR2 locus and its transcriptional regulatory potential.
    • 11 Schlesinger F, Smith AD, Gingeras TR, Hannon GJ, Hodges E. De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements. Genome Res. 23(10), 1601–1614 (2013). •• Initial description of intergenic/intronic hypomethylated regions from genome-wide analyses.
    • 12 Li Y, Huang W, Niu L, Umbach DM, Covo S, Li L. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes. BMC Genomics 14, 553 (2013).
    • 13 Perera BP, Kim J. Alternative promoters of Peg3 with maternal specificity. Sci. Rep. 6, 24438 (2016).
    • 14 Luo Z, Lin C, Woodfin AR et al. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity. Genes Dev. 30(1), 92–101 (2016).
    • 15 Nordin M, Bergman D, Halje M, Engstrom W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif. 47(3), 189–199 (2014).
    • 16 Court F, Baniol M, Hagege H et al. Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA. Nucleic Acids Res. 39(14), 5893–5906 (2011).
    • 17 Nativio R, Sparago A, Ito Y, Weksberg R, Riccio A, Murrell A. Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith–Wiedemann syndrome and Silver–Russell syndrome. Hum. Mol. Genet. 20(7), 1363–1374 (2011).
    • 18 Charalambous M, Menheniott TR, Bennett WR et al. An enhancer element at the Igf2/H19 locus drives gene expression in both imprinted and non-imprinted tissues. Dev. Biol. 271(2), 488–497 (2004). • Initial description of the H19-HMR locus and its transcriptional regulatory potential.
    • 19 Stadler MB, Murr R, Burger L et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378), 490–495 (2011).
    • 20 Hon GC, Rajagopal N, Shen Y et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45(10), 1198–1206 (2013).
    • 21 Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20(1), 110–121 (2010).
    • 22 Blanchette M, Kent WJ, Riemer C et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14(4), 708–715 (2004).
    • 23 Stamatoyannopoulos JA, Snyder M, Hardison R et al. An encyclopedia of mouse DNA elements (mouse ENCODE). Genome Biol. 13(8), 418 (2012).
    • 24 Gerstein MB, Kundaje A, Hariharan M et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414), 91–100 (2012).
    • 25 Wang J, Zhuang J, Iyer S et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22(9), 1798–1812 (2012).
    • 26 Wang J, Zhuang J, Iyer S et al. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium. Nucleic Acids Res. 41, D171–D176 (2013).
    • 27 Ovcharenko I, Loots GG, Giardine BM et al. Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res. 15(1), 184–194 (2005).
    • 28 Ye A, He H, Kim J. Paternally expressed Peg3 controls maternally expressed Zim1 as a trans factor. PLoS ONE 9(9), e108596 (2014).
    • 29 Winer J, Jung CK, Shackel I, Williams PM. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270(1), 41–49 (1999).
    • 30 Creyghton MP, Cheng AW, Welstead GG et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107(50), 21931–21936 (2010).
    • 31 Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22(15), 2990–2997 (1994).
    • 32 Andersson R, Gebhard C, Miguel-Escalada I et al. An atlas of active enhancers across human cell types and tissues. Nature 507(7493), 455–461 (2014).
    • 33 Huang J, Liu X, Li D et al. Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev. Cell 36(1), 9–23 (2016).
    • 34 Faisal M, Kim H, Kim J. Sexual differences of imprinted genes’ expression levels. Gene 533(1), 434–438 (2014).
    • 35 Ferron SR, Charalambous M, Radford E et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475(7356), 381–385 (2011).
    • 36 Surmacz B, Noisa P, Risner-Janiczek JR et al. DLK1 promotes neurogenesis of human and mouse pluripotent stem cell-derived neural progenitors via modulating Notch and BMP signalling. Stem Cell Rev. 8(2), 459–471 (2012).
    • 37 Andersson R. Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. BioEssays 37(3), 314–323 (2015).
    • 38 Kim TK, Shiekhattar R. Architectural and functional commonalities between enhancers and promoters. Cell 162(5), 948–959 (2015).
    • 39 Kuroiwa Y, Kaneko-Ishino T, Kagitani F et al. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat. Genet. 12(2), 186–190 (1996).
    • 40 Kim J, Lu X, Stubbs L. Zim1, a maternally expressed mouse Kruppel-type zinc-finger gene located in proximal chromosome 7. Hum. Mol. Genet. 8(5), 847–854 (1999).
    • 41 Kim J, Bergmann A, Lucas S, Stone R, Stubbs L. Lineage-specific imprinting and evolution of the zinc-finger gene ZIM2. Genomics 84(1), 47–58 (2004).
    • 42 Kim J, Bergmann A, Wehri E, Lu X, Stubbs L. Imprinting and evolution of two Kruppel-type zinc-finger genes, ZIM3 and ZNF264, located in the PEG3/USP29 imprinted domain. Genomics 77(1–2), 91–98 (2001).
    • 43 Relaix F, Weng X, Marazzi G et al. Pw1, a novel zinc finger gene implicated in the myogenic and neuronal lineages. Dev. Biol. 177(2), 383–396 (1996).
    • 44 Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 351(6322), 153–155 (1991).
    • 45 Dechiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64(4), 849–859 (1991).
    • 46 Yevtodiyenko A, Schmidt JV. Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta. Dev. Dyn. 235(4), 1115–1123 (2006).
    • 47 Qu C, Jiang T, Li Y et al. Gene expression and IG-DMR hypomethylation of maternally expressed gene 3 in developing corticospinal neurons. Gene Expr. Patterns 13(1–2), 51–56 (2013).
    • 48 Perera BP, Kim J. Sex and tissue specificity of Peg3 promoters. PLoS ONE 11(10), e0164158 (2016).
    • 49 Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol. 5(6), 226 (2004).
    • 50 Vietri Rudan M, Barrington C, Henderson S et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10(8), 1297–1309 (2015).
    • 51 Chen WK, Kuo WW, Hsieh DJ et al. CREB negatively regulates IGF2R gene expression and downstream pathways to inhibit hypoxia-induced H9c2 cardiomyoblast cell death. Int. J. Mol. Sci. 16(11), 27921–27930 (2015).
    • 52 Bretz CL, Kim J. Transcription-driven DNA methylation setting on the mouse Peg3 locus. Epigenetics 12(11), 945–952 (2017).
    • 53 Kemp CJ, Moore JM, Moser R et al. CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep. 7(4), 1020–1029 (2014).
    • 54 Cai C, Qin X, Wu Z et al. Inhibitory effect of MyoD on the proliferation of breast cancer cells. Oncol. Lett. 11(6), 3589–3596 (2016).
    • 55 Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4(6), pii:a014241 (2014).
    • 56 Kappelmann M, Bosserhoff A, Kuphal S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. Eur. J. Cell Biol. 93(1–2), 76–81 (2014).