We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/epi-2016-0068

Aim: Fetal skin is known to heal without scarring. In mice, the phenomenon is observed until the 16–17 day of gestation – the day of transition from scarless to normal healing. The study aims to identify key methylome and transcriptome changes following the transition. Materials & methods: Methylome and transcriptome profiles were analyzed in murine dorsal skin using microarray approach. Results & conclusion: The genes associated with inflammatory response and hyaluronate degradation showed increased DNA methylation before the transition, while those involved in embryonic morphogenesis, neuron differentiation and synapse functions did so after. A number of the methylome alterations were retained until adulthood and correlated with gene expression, while the functional associations imply that scarless healing depends on epigenetic regulation.

References

  • 1 Wilgus TA. Regenerative healing in fetal skin: a review of the literature. Ostomy Wound Manage. 53(6), 16–31 (2007).
  • 2 Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development 114(1), 253–259 (1992).
  • 3 Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 839–850 (2004).
  • 4 Cass DL, Bullard KM, Sylvester KG, Yang EY, Longaker MT, Adzick NS. Wound size and gestational age modulate scar formation in fetal wound repair. J. Pediatr. Surg. 32(3), 411–415 (1997).
  • 5 Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. Birth Defects Res. C Embryo Today 96(3), 237–247 (2012).
  • 6 West DC, Shaw DM, Lorenz P, Adzick NS, Longaker MT. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int. J. Biochem. Cell Biol. 29(1), 201–210 (1997).
  • 7 Alaish SM, Yager D, Diegelmann RF, Cohen IK. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J. Pediatr. Surg. 29(8), 1040–1043 (1994).
  • 8 Cowin AJ, Brosnan MP, Holmes TM, Ferguson MW. Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev. Dyn. 212(3), 385–393 (1998).
  • 9 Martin P, D’Souza D, Martin J et al. Wound healing in the PU.1 null mouse-tissue repair is not dependent on inflammatory cells. Curr. Biol. 13(13), 1122–1128 (2003).
  • 10 Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12(6), 671–676 (2000).
  • 11 Liechty KW, Crombleholme TM, Cass DL, Martin B, Adzick NS. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J. Surg. Res. 77(1), 80–84 (1998).
  • 12 Rolfe KJ, Grobbelaar AO. A review of fetal scarless healing. ISRN Dermatol. 2012, 698034 (2012).
  • 13 Scheid A, Wenger RH, Schaffer L et al. Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB J. 16(3), 411–413 (2002).
  • 14 Wulff BC, Parent AE, Meleski MA, Dipietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J. Invest. Dermatol. 132(2), 458–465 (2012).
  • 15 Estes JM, Berg JSV, Adzick NS, MacGillivray TE, Desmoulière A, Gabbiani G. Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation 56(3), 173–181 (1994).
  • 16 Stelnicki EJ, Arbeit J, Cass DL, Saner C, Harrison M, Largman C. Modulation of the human homeobox genes PRX-2 and HOXB13 in scarless fetal wounds. J. Invest. Dermatol. 111(1), 57–63 (1998).
  • 17 Stelnicki EJ, Komuves LG, Holmes D et al. The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin. Differentiation 62(1), 33–41 (1997).
  • 18 Stelnicki EJ, Komuves LG, Kwong AO et al. HOX homeobox genes exhibit spatial and temporal changes in expression during human skin development. J. Invest. Dermatol. 110(2), 110–115 (1998).
  • 19 Gawronska-Kozak B, Bogacki M, Rim JS, Monroe WT, Manuel JA. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 14(3), 265–276 (2006).
  • 20 Gawronska-Kozak B, Grabowska A, Kopcewicz M, Kur A. Animal models of skin regeneration. Reprod. Biol. 14(1), 61–67 (2014).
  • 21 Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489(7417), 561–565 (2012).
  • 22 Podolak-Popinigis J, Górnikiewicz B, Ronowicz A, Sachadyn P. Transcriptome profiling reveals distinctive traits of retinol metabolism and neonatal parallels in the MRL/MpJ mouse. BMC Genom. 16(1), 926 (2015).
  • 23 Yakushiji N, Suzuki M, Satoh A et al. Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev. Biol. 312(1), 171–182 (2007).
  • 24 Barrero MJ, Boue S, Izpisua Belmonte JC. Epigenetic mechanisms that regulate cell identity. Cell Stem Cell 7(5), 565–570 (2010).
  • 25 Gornikiewicz B, Ronowicz A, Podolak J, Madanecki P, Stanislawska-Sachadyn A, Sachadyn P. Epigenetic basis of regeneration: analysis of genomic DNA methylation profiles in the MRL/MpJ mouse. DNA Res. 20(6), 605–621 (2013).
  • 26 Sim CB, Ziemann M, Kaspi A et al. Dynamic changes in the cardiac methylome during postnatal development. FASEB J. 29(4), 1329–1343 (2015).
  • 27 Gornikiewicz B, Ronowicz A, Krzeminski M, Sachadyn P. Changes in gene methylation patterns in neonatal murine hearts: implications for the regenerative potential. BMC Genom. 17(1), 231 (2016).
  • 28 Agger K, Cloos PA, Christensen J et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163), 731–734 (2007).
  • 29 Cui K, Zang C, Roh TY et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4(1), 80–93 (2009).
  • 30 Lv L, Han X, Sun Y, Wang X, Dong Q. Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro. Exp. Neurol. 233(2), 783–790 (2012).
  • 31 Lv L, Sun Y, Han X, Xu CC, Tang YP, Dong Q. Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res. 1396, 60–68 (2011).
  • 32 Kang J, Hu J, Karra R et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532(7598), 201–206 (2016).
  • 33 Cheng J, Yu H, Deng S, Shen G. MicroRNA profiling in mid- and late-gestational fetal skin: implication for scarless wound healing. Tohoku J. Exp. Med. 221(3), 203–209 (2010).
  • 34 Lewis CJ, Mardaryev AN, Sharov AA, Fessing MY, Botchkarev VA. The epigenetic regulation of wound healing. Adv. Wound Care (New Rochelle) 3(7), 468–475 (2014).
  • 35 McFarlane L, Truong V, Palmer JS, Wilhelm D. Novel PCR assay for determining the genetic sex of mice. Sex. Dev. 7(4), 207–211 (2013).
  • 36 Irizarry RA, Hobbs B, Collin F et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2), 249–264 (2003).
  • 37 Huang Da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009).
  • 38 Huang Da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1), 1–13 (2009).
  • 39 Janky R, Verfaillie A, Imrichova H et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10(7), e1003731 (2014).
  • 40 Resolve. resolve-whfg.appspot.com
  • 41 Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J. 16(9), 963–974 (2002).
  • 42 Plasari G, Calabrese A, Dusserre Y et al. Nuclear factor I-C links platelet-derived growth factor and transforming growth factor beta1 signaling to skin wound healing progression. Mol. Cell. Biol. 29(22), 6006–6017 (2009).
  • 43 Thomay AA, Daley JM, Sabo E et al. Disruption of interleukin-1 signaling improves the quality of wound healing. Am. J. Pathol. 174(6), 2129–2136 (2009).
  • 44 Straino S, Germani A, Di Carlo A et al. Enhanced arteriogenesis and wound repair in dystrophin-deficient mdx mice. Circulation 110(21), 3341–3348 (2004).
  • 45 Stroncek JD, Reichert WM. Overview of wound healing in different tissue types. In: Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment. Reichert WM (Ed.). CRC Press/Taylor & Francis Taylor & Francis Group, LLC. Boca Raton, FL, USA (2008).
  • 46 Chen W, Fu X, Ge S et al. Profiling of genes differentially expressed in a rat of early and later gestational ages with high-density oligonucleotide DNA array. Wound Repair Regen. 15(1), 147–155 (2007).
  • 47 Colwell AS, Longaker MT, Peter Lorenz H. Identification of differentially regulated genes in fetal wounds during regenerative repair. Wound Repair Regen. 16(3), 450–459 (2008).
  • 48 Hu MS, Januszyk M, Hong WX et al. Gene expression in fetal murine keratinocytes and fibroblasts. J. Surg. Res. 190(1), 344–357 (2014).
  • 49 Wulff BC, Yu L, Parent AE, Wilgus TA. Novel differences in the expression of inflammation-associated genes between mid-and late-gestational dermal fibroblasts. Wound Repair Regen. 21(1), 103–112 (2013).
  • 50 Henderson J, Terenghi G, Ferguson MW. The reinnervation and revascularisation pattern of scarless murine fetal wounds. J. Anat. 218(6), 660–667 (2011).
  • 51 Kishi K, Ohyama K, Satoh H et al. Mutual dependence of murine fetal cutaneous regeneration and peripheral nerve regeneration. Wound Repair Regen. 14(1), 91–99 (2006).
  • 52 Antony AK, Kong W, Lorenz HP. Upregulation of neurodevelopmental genes during scarless healing. Ann. Plast. Surg. 64(2), 247–250 (2010).
  • 53 Cheng C, Singh V, Krishnan A, Kan M, Martinez JA, Zochodne DW. Loss of innervation and axon plasticity accompanies impaired diabetic wound healing. PLoS ONE 8(9), e75877 (2013).
  • 54 Kumar A, Brockes JP. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 35(11), 691–699 (2012).
  • 55 Iocono JA, Ehrlich HP, Keefer KA, Krummel TM. Hyaluronan induces scarless repair in mouse limb organ culture. J. Pediatr. Surg. 33(4), 564–567 (1998).
  • 56 Buchanan EP, Longaker MT, Lorenz HP. Fetal skin wound healing. Adv. Clin. Chem. 48, 137–161 (2009).
  • 57 Thummel R, Burket CT, Hyde DR. Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration. Scientific World J. 6(Suppl. 1), 65–81 (2006).
  • 58 Hirose K, Shimoda N, Kikuchi Y. Transient reduction of 5-methylcytosine and 5-hydroxymethylcytosine is associated with active DNA demethylation during regeneration of zebrafish fin. Epigenetics 8(9), 899–906 (2013).
  • 59 Longaker MT, Whitby DJ, Ferguson MW, Lorenz HP, Harrison MR, Adzick NS. Adult skin wounds in the fetal environment heal with scar formation. Ann. Surg. 219(1), 65 (1994).
  • 60 Liechty KW, Kim HB, Adzick NS, Crombleholme TM. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J. Pediatr. Surg. 35(6), 866–873 (2000).
  • 61 Coolen NA, Schouten KCWM, Boekema BKHL, Middelkoop E, Ulrich MMW. Wound healing in a fetal, adult, and scar tissue model: a comparative study. Wound Repair Regen. 18(3), 291–301 (2010).
  • 62 Hohlfeld J, De Buys Roessingh A, Hirt-Burri N et al. Tissue engineered fetal skin constructs for paediatric burns. Lancet 366(9488), 840–842 (2005).