We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

mTOR inhibitors in breast cancer

    Ingrid A Mayer

    Ingrid A Mayer is an Assistant Professor of Medicine in the Hematology/Oncology Division and Vanderbilt-Ingram Cancer Center Member (TN, USA), whose subspecialty is breast cancer. She is the Clinical Core Director of the NCI-funded Vanderbilt Breast Specialized Program of Research Excellence (SPORE), where her role is to implement and conduct investigator-initiated, mechanism-based clinical and translational trials in breast cancer, focusing in novel diagnostic and therapeutic approaches. Her research interests and funding are in the area of correlated PI3K/Akt, ErbB and IGF-1 signaling pathways in breast cancer.

    Published Online:https://doi.org/10.2217/ebo.11.261
    Abstract:

    The purpose of this chapter is to review the role of mTOR inhibition in breast cancer. Because evidence suggests that both hormone receptor-positive tumors and HER2-overexpressing tumors use the PI3K/Akt/mTOR pathway to escape control by antihormone and anti-HER2 therapies, combination therapy with mTOR inhibitors is a rational approach to determine whether resistance to these agents can be prevented and sensitivity can be restored by the addition of mTOR inhibition.

    References

    • Jemal A , Bray F , Center MM , Ferlay J , Ward E , Forman D . Global cancer statistics . CA Cancer J. Clin. 61 (2) , 69 – 90 (2011) .
    • Falkson G , Gelman RS , Leone L , Falkson CI . Survival of premenopausal women with metastatic breast cancer. Long-term follow-up of Eastern Cooperative Group and Cancer and Leukemia Group B studies . Cancer 66 (7) , 1621 – 1629 (1990) .
    • Osborne CK , Yochmowitz MG , Knight WA 3rd , McGuire WL . The value of estrogen and progesterone receptors in the treatment of breast cancer . Cancer 46 (Suppl. 12) , 2884 – 2888 (1980) .
    • Slamon DJ , Leyland-Jones B , Shak S et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 . N. Engl. J. Med. 344 (11) , 783 – 792 (2001) .
    • Ali S , Coombes RC . Endocrine-responsive breast cancer and strategies for combating resistance . Nat. Rev. Cancer 2 (2) , 101 – 112 (2002) .
    • Clarke R , Skaar T , Leonessa F et al. Acquisition of an antiestrogen-resistant phenotype in breast cancer: role of cellular and molecular mechanisms . Cancer Treat. Res. 87 , 263 – 283 (1996) .
    • Lu Q , Yue W , Wang J , Liu Y , Long B , Brodie A . The effects of aromatase inhibitors and antiestrogens in the nude mouse model . Breast Cancer Res. Treat. 50 (1) , 63 – 71 (1998) .
    • Wiebe VJ , Osborne CK , Fuqua SA , Degregorio MW . Tamoxifen resistance in breast cancer . Crit. Rev. Oncol. Hematol. 14 (3) , 173 – 188 (1993) .
    • Baselga J . Clinical trials of single-agent trastuzumab (Herceptin) . Semin. Oncol. 27 (5 Suppl. 9) , 20 – 26 (2000) .
    • 10  Burstein HJ , Kuter I , Campos SM et al. Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer . J. Clin. Oncol. 19 (10) , 2722 – 2730 (2001) .
    • 11  Vogel CL , Cobleigh MA , Tripathy D et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer . J. Clin. Oncol. 20 (3) , 719 – 726 (2002) .
    • 12  Vivanco I , Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer . Nat. Rev. Cancer 2 (7) , 489 – 501 (2002) .
    • 13  Marsh DJ , Dahia PL , Zheng Z et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome . 16 , 333 – 3334 (1997) .
    • 14  Lali FV , Hunt AE , Turner SJ , Foxwell BMJ . The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase . J. Biol. Chem. 275 , 7395 – 7402 (2000) .
    • 15  Engelman JA , Luo J , Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism . Nat. Rev. Genet. 7 (8) , 606 – 619 (2006) .
    • 16  Saal LH , Holm K , Maurer M et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma . Cancer Res. 65 (7) , 2554 – 2559 (2005) .
    • 17  Bachman KE , Argani P , Samuels Y et al. The PIK3CA gene is mutated with high frequency in human breast cancers . Cancer Biol. Ther. 3 (8) , 772 – 775 (2004) .
    • 18  Stemke-Hale K , Gonzalez-Angulo AM , Lluch A et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer . Cancer Res. 68 (15) , 6084 – 6091 (2008) .
    • 19  Barbareschi M , Buttitta F , Felicioni L et al. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas . Clin. Cancer Res. 13 (20) , 6064 – 6069 (2007) .
    • 20  Miller TW , Hennessy BT , Gonzalez-Angulo AM et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer . J. Clin. Invest. 120 (7) , 2406 – 2413 (2010) .
    • 21  Serra V , Markman B , Scaltriti M et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations . Cancer Res. 68 (19) , 8022 – 8030 (2008) .
    • 22  Berns K , Horlings HM , Hennessy BT et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer . Cancer Cell 12 (4) , 395 – 402 (2007) .
    • 23  Nagata Y , Lan KH , Zhou X et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients . Cancer Cell 6 (2) , 117 – 127 (2004) .
    • 24  Yu K , Toral-Barza L , Discafani C et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer . Endocr. Relat. Cancer 8 (3) , 249 – 258 (2001) .
    • 25  Yuan R , Kay A , Berg WJ , Lebwohl D . Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy . J. Hematol. Oncol. 2 , 45 (2009) .
    • 26  Guertin DA , Sabatini DM . Defining the role of mTOR in cancer . Cancer Cell 12 (1) , 9 – 22 (2007) .
    • 27  Degraffenried LA , Friedrichs WE , Russell DH et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity . Clin. Cancer Res. 10 (23) , 8059 – 8067 (2004) .
    • 28  Beeram M , Tan QT , Tekmal RR , Russell D , Middleton A , Degraffenried LA . Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling . Ann. Oncol. 18 (8) , 1323 – 1328 (2007) .
    • 29  Boulay A , Rudloff J , Ye J et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer . Clin. Cancer Res. 11 (14) , 5319 – 5328 (2005) .
    • 30  Miller TW , Hennessy BT , Gonzalez-Angulo AM et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer . J. Clin. Invest. 120 (7) , 2406 – 2413 (2010) .
    • 31  Baselga J , Roche H , Fumoleau P . Treatment of postmenopausal women with locally advanced or metastatic breast cancer with letrozole alone or in combination with temsirolimus: a randomized 3-arm Phase 2 study. Presented at: the 28th Annual San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 8–11 December (2005) .
    • 32  Baselga J , Dam PAV , Greil R et al. Improved clinical and cell cycle response with an mTOR inhibitor, daily oral RAD001 (everolimus) plus letrozole versus placebo plus letrozole in a randomized Phase 2 neoadjuvant trial in ER+ breast cancer . J. Clin. Oncol. 26 (Suppl.20) , (2008) (Abstract 530).
    • 33  Bachelot T , Bourgier C , Cropet C et al. TAMRAD: a GINECO randomized Phase 2 trial of everolimus in combination with tamoxifen versus tamoxifen alone in patients (pts) with hormone-receptor positive, HER2 negative metastatic breast cancer (MBC) with prior exposure to Aromatase inhibitors (AI). Presented at:AARC–CTRC San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 8–10 December 2010 .
    • 34  Baselga J , Campone M , Sahmoud T et al. Everolimus in combination with exemestane for postmenopausal women with advanced breast cancer who are refractory to letrozole or anastrozole: results of the BOLERO-2 Phase 3 trial. Presented at: ECCO-ESMO LBA. Stockholm, Sweden, 23–27 September 2011 (Abstract 9) .
    • 35  Chan CT , Metz MZ , Kane SE . Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors . Breast Cancer Res. Treat. 91 (2) , 187 – 201 (2005) .
    • 36  Dunlap J , Le C , Shukla A et al. Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma . Breast Cancer Res. Treat. 120 (2) , 409 – 418 (2009) .
    • 37  Bender LM , Nahta R . Her2 cross talk and therapeutic resistance in breast cancer . Front. Biosci. 13 , 3906 – 3912 (2008) .
    • 38  Nahta R , Yuan LX , Zhang B , Kobayashi R , Esteva FJ . Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells . Cancer Res 65 (23) , 11118 – 11128 (2005) .
    • 39  Lu Y , Zi X , Pollak M . Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells . Int. J. Cancer 108 (3) , 334 – 341 (2004) .
    • 40  Lu Y , Zi X , Zhao Y , Mascarenhas D , Pollak M . Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin) . J. Natl Cancer Inst. 93 (24) , 1852 – 1857 (2001) .
    • 41  Nahta R , Yu D , Hung MC , Hortobagyi GN , Esteva FJ . Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer . Nat. Clin. Pract. Oncol. 3 (5) , 269 – 280 (2006) .
    • 42  Harris LN , You F , Schnitt SJ et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer . Clin. Cancer Res. 13 (4) , 1198 – 1207 (2007) .
    • 43  Nahta R , Esteva FJ . HER2 therapy: molecular mechanisms of trastuzumab resistance . Breast Cancer Res. 8 (6) , 215 (2006) .
    • 44  Miller TW , Forbes JT , Shah C et al. Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells . Clin. Cancer Res. 15 (23) , 7266 – 7276 (2009) .
    • 45  Lu CH , Wyszomierski SL , Tseng LM et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency . Clin. Cancer Res. 13 (19) , 5883 – 5888 (2007) .
    • 46  Andre F , Campone M , O’Regan R et al. Phase 1 study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab . J. Clin. Oncol. 28 (34) , 5110 – 5115 (2010) .
    • 47  Jerusalem G , Fasolo A , Dieras V et al. Phase 1 trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer . Breast Cancer Res. Treat. 125 (2) , 447 – 455 (2011) .
    • 48  O’Reilly KE , Rojo F , She QB et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt . Cancer Res. 66 (3) , 1500 – 1508 (2006) .