We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

miRNAs: early prognostic biomarkers for Type 2 diabetes mellitus?

    Parnika Bhatia

    Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India

    ,
    Shikha Raina

    Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India

    ,
    Jeetender Chugh

    Department of Chemistry, Indian Institute of Science Education & Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India

    &
    Shilpy Sharma

    *Author for correspondence:

    E-mail Address: ssharma@unipune.ac.in

    ;

    E-mail Address: shilpy.sharma@gmail.com

    Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India

    Published Online:https://doi.org/10.2217/bmm.15.69

    Type 2 diabetes mellitus (T2DM) has reached epidemic proportions and is associated with peripheral insulin resistance. The currently used therapies aim to delay progression of T2DM. Their efficacy could drastically be improved if implemented at earlier stages. Classical diagnostic markers (blood glucose and HbA1C) are generally detected once metabolic imbalance has already set in. Therefore, development of biomarkers for early diagnosis would help identify individuals at risk for developing T2DM. Along with genetic predisposition, epigenetics also plays a major role in T2DM development. In this review, we discuss the potential role of early diagnostic markers such as circulating miRNAs, studies done so far and challenges to be considered while taking into account the novel role of miRNAs as prognostic biomarkers.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl.1), S62–S67 (2009).
    • 2 Kumar M, Nath S, Prasad HK, Sharma GD, Li Y. MicroRNAs: a new ray of hope for diabetes mellitus. Protein Cell 3(10), 726–738 (2012).
    • 3 Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 88(11), 1322–1335 (2008).
    • 4 Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of Type 2 diabetes mellitus: present and future perspectives. Nat. Rev. Endocrinol. 8(4), 228–236 (2012).
    • 5 Chan RS, Woo J. Prevention of overweight and obesity: how effective is the current public health approach. Int. J. Environ. Res. Public Health 7(3), 765–783 (2010).
    • 6 Stumvoll M, Goldstein BJ, Van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365(9467), 1333–1346 (2005).
    • 7 International Expert C. International expert committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care 32(7), 1327–1334 (2009).
    • 8 Schulze MB, Weikert C, Pischon T et al. Use of multiple metabolic and genetic markers to improve the prediction of Type 2 diabetes: the EPIC-Potsdam study. Diabetes Care 32(11), 2116–2119 (2009).
    • 9 Othman A, Saely CH, Muendlein A et al. Plasma 1–deoxysphingolipids are predictive biomarkers for Type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 3(1), e000073 (2015).
    • 10 Kolberg JA, Jorgensen T, Gerwien RW et al. Development of a Type 2 diabetes risk model from a panel of serum biomarkers from the inter99 cohort. Diabetes Care 32(7), 1207–1212 (2009).
    • 11 Herder C, Kowall B, Tabak AG, Rathmann W. The potential of novel biomarkers to improve risk prediction of Type 2 diabetes. Diabetologia 57(1), 16–29 (2014).
    • 12 Vinagre I, Sanchez-Quesada JL, Sanchez-Hernandez J et al. Inflammatory biomarkers in Type 2 diabetic patients: effect of glycemic control and impact of LDL subfraction phenotype. Cardiovasc. Diabetol. 13, 34 (2014).
    • 13 Bluher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 64(1), 131–145 (2015).
    • 14 Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 9(9), 513–521 (2013).
    • 15 Urdea M, Kolberg J, Wilber J et al. Validation of a multimarker model for assessing risk of Type 2 diabetes from a five-year prospective study of 6784 Danish people (inter99). J. Diabetes Sci. Technol. 3(4), 748–755 (2009).
    • 16 Guttmacher AE, Porteous ME, Mcinerney JD. Educating health-care professionals about genetics and genomics. Nat. Rev. Genet. 8(2), 151–157 (2007).
    • 17 Muller G. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab. Syndr. Obes. 5, 247–282 (2012).
    • 18 Zhou Y, Park SY, Su J et al. Tcf7l2 is a master regulator of insulin production and processing. Hum. Mol. Genet. 23(24), 6419–6431 (2014).
    • 19 Li J, Gong YP, Li CL, Lu YH, Liu Y, Shao YH. Genetic basis of Type 2 diabetes-recommendations based on meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 19(1), 138–148 (2015).
    • 20 Brunetti A, Chiefari E, Foti D. Recent advances in the molecular genetics of Type 2 diabetes mellitus. World J. Diabetes 5(2), 128–140 (2014).
    • 21 Kato N. Insights into the genetic basis of Type 2 diabetes. J. Diabetes Investig. 4(3), 233–244 (2013).
    • 22 Ng MC, Shriner D, Chen BH et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of Type 2 diabetes. PLoS Genet. 10(8), e1004517 (2014).
    • 23 Cauchi S, El Achhab Y, Choquet H et al. Tcf7l2 is reproducibly associated with Type 2 diabetes in various ethnic groups: a global meta-analysis. J. Mol. Med. (Berl.) 85(7), 777–782 (2007).
    • 24 Mondal AK, Das SK, Baldini G et al. Genotype and tissue-specific effects on alternative splicing of the transcription factor 7-like 2 gene in humans. J. Clin. Endocrinol. Metab. 95(3), 1450–1457 (2010).
    • 25 Shu XO, Long J, Cai Q et al. Identification of new genetic risk variants for Type 2 diabetes. PLoS Genet. 6(9), e1001127 (2010).
    • 26 Wheeler E, Barroso I. Genome-wide association studies and Type 2 diabetes. Brief. Funct. Genomics 10(2), 52–60 (2011).
    • 27 Zeggini E, Scott LJ, Saxena R et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for Type 2 diabetes. Nat. Genet. 40(5), 638–645 (2008).
    • 28 Olsson AH, Volkov P, Bacos K et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet. 10(11), e1004735 (2014).
    • 29 Li X, Yang M, Wang H et al. Overexpression of Jazf1 protected apoe-deficient mice from atherosclerosis by inhibiting hepatic cholesterol synthesis via CREB-dependent mechanisms. Int. J. Cardiol. 177(1), 100–110 (2014).
    • 30 Simonis-Bik AM, Nijpels G, Van Haeften TW et al. Gene variants in the novel Type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes 59(1), 293–301 (2010).
    • 31 Haney S, Zhao J, Tiwari S, Eng K, Guey LT, Tien E. RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in Type 2 diabetes identifies roles for CAMK1d and CDKAL1, among others, in hepatic glucose regulation. PLoS ONE 8(6), e64946 (2013).
    • 32 Jonsson A, Ladenvall C, Ahluwalia TS et al. Effects of common genetic variants associated with Type 2 diabetes and glycemic traits on alpha- and beta-cell function and insulin action in humans. Diabetes 62(8), 2978–2983 (2013).
    • 33 Raimondo A, Rees MG, Gloyn AL. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr. Opin. Lipidol. 26(2), 88–95 (2015).
    • 34 Chen S, Okahara F, Osaki N, Shimotoyodome A. Increased gip signaling induces adipose inflammation via a HIF-1alpha-dependent pathway and impairs insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 308(5), E414–E425 (2015).
    • 35 Ghorai A, Ghosh U. MiRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front. Genet. 5, 100 (2014).
    • 36 Tolle A, Ratert N, Jung K. MiRNA panels as biomarkers for bladder cancer. Biomark. Med. 8(5), 733–746 (2014).
    • 37 Price NL, Ramirez CM, Fernandez-Hernando C. Relevance of microRNA in metabolic diseases. Crit. Rev. Clin. Lab. Sci. 51(6), 305–320 (2014).
    • 38 Rokkas T, Kothonas F, Rokka A, Koukoulis G, Symvoulakis E. The role of circulating microRNAs as novel biomarkers in diagnosing colorectal cancer: a meta-analysis. Eur. J. Gastroenterol. Hepatol. 27(7), 819–825 (2015).
    • 39 Wang F, Chen C, Wang D. Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets. Front. Med. 8(4), 404–418 (2014).
    • 40 Rognoni A, Cavallino C, Lupi A et al. Novel biomarkers in the diagnosis of acute coronary syndromes: the role of circulating miRNAs. Expert Rev. Cardiovasc. Ther. 12(9), 1119–1124 (2014).
    • 41 Dorval V, Nelson PT, Hebert SS. Circulating microRNAs in Alzheimer's disease: the search for novel biomarkers. Front. Mol. Neurosci. 6, 24 (2013).
    • 42 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin–14. Cell 75(5), 843–854 (1993).
    • 43 Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5), 855–862 (1993).
    • 44 Chien CH, Sun YM, Chang WC et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res. 39(21), 9345–9356 (2011).
    • 45 Godnic I, Zorc M, Jevsinek Skok D et al. Genome-wide and species-wide in silico screening for intragenic microRNAs in human, mouse and chicken. PLoS ONE 8(6), e65165 (2013).
    • 46 Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).•• Discusses the mechanism of action of miRNA.
    • 47 Da Sacco L, Masotti A. Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5′ untranslated region. Int. J. Mol. Sci. 14(1), 480–495 (2012).
    • 48 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009).
    • 49 Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19(1), 92–105 (2009).
    • 50 Friedlander MR, Lizano E, Houben AJ et al. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol. 15(4), R57 (2014).
    • 51 Tétreault N, De Guire V. MiRNAs: their discovery, biogenesis and mechanism of action. Clin. Biochem. 46(10–11), 842–845 (2013).
    • 52 Lee Y, Kim M, Han J et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23(20), 4051–4060 (2004).
    • 53 Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20(5), 515–524 (2006).
    • 54 Lynn FC, Skewes-Cox P, Kosaka Y, Mcmanus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56(12), 2938–2945 (2007).
    • 55 Poy MN, Hausser J, Trajkovski M et al. MiR–375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl Acad. Sci. USA 106(14), 5813–5818 (2009).
    • 56 King AJ. The use of animal models in diabetes research. Br. J. Pharmacol. 166(3), 877–894 (2012).
    • 57 Zhu H, Leung SW. Identification of microRNA biomarkers in Type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58(5), 900–911 (2015).•• Discusses about the stability of miRNAs in body fluids.
    • 58 Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101(10), 2087–2092 (2010).
    • 59 Weber JA, Baxter DH, Zhang S et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56(11), 1733–1741 (2010).• Talks about the stability of miRNAs in dried serum blots at room temperature.
    • 60 Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18(10), 997–1006 (2008).
    • 61 Patnaik SK, Mallick R, Yendamuri S. Detection of microRNAs in dried serum blots. Anal. Biochem. 407(1), 147–149 (2010).
    • 62 Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13(4), 423–433 (2011).• Discusses how exosomes help in the transfer of miRNA between cells and into the circulation.
    • 63 Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38(20), 7248–7259 (2010).
    • 64 Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9(6), 654–659 (2007).•• First study identifying a plasma miRNA signature for use as a biomarker in the Bruneck population from Italy.
    • 65 Santovito D, De Nardis V, Marcantonio P et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J. Clin. Endocrinol. Metab. 99(9), E1681–E1685 (2014).
    • 66 Zampetaki A, Kiechl S, Drozdov I et al. Plasma microrna profiling reveals loss of endothelial miR–126 and other microRNAs in Type 2 diabetes. Circ. Res. 107(6), 810–817 (2010).
    • 67 Zhou J, Song S, Cen J, Zhu D, Li D, Zhang Z. MicroRNA–375 is downregulated in pancreatic cancer and inhibits cell proliferation in vitro. Oncol. Res. 20(5–6), 197–203 (2012).
    • 68 Dong S, Xiong W, Yuan J, Li J, Liu J, Xu X. MiRNA–146a regulates the maturation and differentiation of vascular smooth muscle cells by targeting NF-kappab expression. Mol. Med. Rep. 8(2), 407–412 (2013).
    • 69 Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappab-dependent induction of microRNA miR–146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103(33), 12481–12486 (2006).
    • 70 Balasubramanyam M, Aravind S, Gokulakrishnan K et al. Impaired miR–146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol. Cell Biochem. 351(1–2), 197–205 (2011).
    • 71 Feng B, Chen S, Mcarthur K et al. MiR–146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60(11), 2975–2984 (2011).
    • 72 Yang Z, Chen H, Si H et al. Serum miR–23a, a potential biomarker for diagnosis of pre-diabetes and Type 2 diabetes. Acta Diabetol. 51(5), 823–831 (2014).
    • 73 Karolina DS, Armugam A, Tavintharan S et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in Type 2 diabetes mellitus. PLoS ONE 6(8), e22839 (2011).
    • 74 Rong Y, Bao W, Shan Z et al. Increased microRNA–146a levels in plasma of patients with newly diagnosed Type 2 diabetes mellitus. PLoS ONE 8(9), e73272 (2013).
    • 75 Kong L, Zhu J, Han W et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed Type 2 diabetes: a clinical study. Acta Diabetol. 48(1), 61–69 (2011).
    • 76 Kuhnert F, Mancuso MR, Hampton J et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR–126. Development 135(24), 3989–3993 (2008).
    • 77 Mcclelland AD, Kantharidis P. MicroRNA in the development of diabetic complications. Clin. Sci. (Lond.) 126(2), 95–110 (2014).
    • 78 Moura J, Borsheim E, Carvalho E. The role of microRNAs in diabetic complications-special emphasis on wound healing. Genes (Basel) 5(4), 926–956 (2014).
    • 79 Ortega FJ, Mercader JM, Moreno-Navarrete JM et al. Profiling of circulating microRNAs reveals common microRNAs linked to Type 2 diabetes that change with insulin sensitization. Diabetes Care 37(5), 1375–1383 (2014).
    • 80 Zhang T, Lv C, Li L et al. Plasma miR–126 is a potential biomarker for early prediction of Type 2 diabetes mellitus in susceptible individuals. Biomed. Res. Int. 2013, 761617 (2013).
    • 81 Liu Y, Gao G, Yang C et al. The role of circulating microRNA–126 (miR–126): a novel biomarker for screening prediabetes and newly diagnosed Type 2 diabetes mellitus. Int. J. Mol. Sci. 15(6), 10567–10577 (2014).
    • 82 Esguerra JL, Mollet IG, Salunkhe VA, Wendt A, Eliasson L. Regulation of pancreatic beta cell stimulus-secretion coupling by microRNAs. Genes (Basel) 5(4), 1018–1031 (2014).
    • 83 El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E. MiR–375 targets 3′-phosphoinositide-dependent protein kinase–1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10), 2708–2717 (2008).
    • 84 Higuchi C, Nakatsuka A, Eguchi J et al. Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for Type 2 diabetes. Metabolism 64(4), 489–497 (2015).
    • 85 Sun K, Chang X, Yin L et al. Expression and DNA methylation status of microRNA-375 in patients with Type 2 diabetes mellitus. Mol. Med. Rep. 9(3), 967–972 (2014).
    • 86 Wang X, Sundquist J, Zoller B et al. Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2. PLoS ONE 9(1), e86792 (2014).
    • 87 Chuang T-Y, Wu H-L, Chen C-C et al. MicroRNA–223 expression is upregulated in insulin resistant human adipose tissue. J. Diabetes Res. 2015, 943659 (2015).
    • 88 Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, Liu ZM. MicroRNA–15a positively regulates insulin synthesis by inhibiting uncoupling protein–2 expression. Diabetes Res. Clin. Pract. 91(1), 94–100 (2011).
    • 89 He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3t3–l1 adipocytes. Mol. Endocrinol. 21(11), 2785–2794 (2007).
    • 90 Roggli E, Gattesco S, Caille D et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic nod mice. Diabetes 61(7), 1742–1751 (2012).
    • 91 Chen HY, Zhong X, Huang XR et al. MicroRNA–29b inhibits diabetic nephropathy in db/db mice. Mol. Ther. 22(4), 842–853 (2014).
    • 92 Plaisance V, Waeber G, Regazzi R, Abderrahmani A. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J. Diabetes Res. 2014, 618652 (2014).
    • 93 Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and miR–9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J. 278(7), 1167–1174 (2011).
    • 94 Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem. 389(3), 305–312 (2008).
    • 95 Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a˜27a˜24-2 cluster and its implication in human diseases. Mol. Cancer 9, 232 (2010).
    • 96 Kato M, Zhang J, Wang M et al. MicroRNA–192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of e-box repressors. Proc. Natl Acad. Sci. USA 104(9), 3432–3437 (2007).
    • 97 Li R, Chung AC, Yu X, Lan HY. MicroRNAs in diabetic kidney disease. Int. J. Endocrinol. 2014, 593956 (2014).
    • 98 Prabu P, Rome S, Sathishkumar C et al. Circulating miRNAs of ‘Asian Indian phenotype’ identified in subjects with impaired glucose tolerance and patients with Type 2 diabetes. PLoS ONE 10(5), e0128372 (2015).
    • 99 Melkman-Zehavi T, Oren R, Kredo-Russo S et al. MiRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 30(5), 835–845 (2011).
    • 100 Zhou J, Meng Y, Tian S et al. Comparative microRNA expression profiles of Cynomolgus monkeys, rat, and human reveal that miR-182 is involved in T2D pathogenic processes. J. Diabetes Res. 2014, 760397 (2014).
    • 101 Zhao X, Mohan R, Ozcan S, Tang X. MicroRNA–30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (map4k4) in pancreatic beta-cells. J. Biol. Chem. 287(37), 31155–31164 (2012).
    • 102 Karolina DS, Tavintharan S, Armugam A et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97(12), E2271–E2276 (2012).
    • 103 Herrera BM, Lockstone HE, Taylor JM et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of Type 2 diabetes. Diabetologia 53(6), 1099–1109 (2010).
    • 104 Cai J, Wu J, Zhang H et al. MiR–186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 73(2), 756–766 (2013).
    • 105 Chen BZ, Yu SL, Singh S et al. Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biol. Int. 35(1), 29–37 (2011).
    • 106 Antoniou A, Mastroyiannopoulos NP, Uney JB, Phylactou LA. MiR–186 inhibits muscle cell differentiation through myogenin regulation. J. Biol. Chem. 289(7), 3923–3935 (2014).
    • 107 O'connell RM, Rao DS, Baltimore D. MicroRNA regulation of inflammatory responses. Annu. Rev. Immunol. 30, 295–312 (2012).•• Discusses about the different challenges faced in utilizing miRNAs as circulating biomarkers.
    • 108 Corral-Fernandez NE, Salgado-Bustamante M, Martinez-Leija ME et al. Dysregulated miR–155 expression in peripheral blood mononuclear cells from patients with Type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 121(6), 347–353 (2013).
    • 109 Kornfeld JW, Baitzel C, Konner AC et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494(7435), 111–115 (2013).
    • 110 Floris I, Descamps B, Vardeu A et al. Gestational diabetes mellitus impairs fetal endothelial cell functions through a mechanism involving microRNA–101 and histone methyltransferase enhancer of zester homolog–2. Arterioscler. Thromb. Vasc. Biol. 35(3), 664–674 (2015).
    • 111 Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F. Increased expression of microRNA miR–326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab. Res. Rev. 27(8), 862–866 (2011).
    • 112 Caporali A, Meloni M, Vollenkle C et al. Deregulation of microRNA–503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123(3), 282–291 (2011).
    • 113 Pescador N, Perez-Barba M, Ibarra JM, Corbaton A, Martinez-Larrad MT, Serrano-Rios M. Serum circulating microRNA profiling for identification of potential Type 2 diabetes and obesity biomarkers. PLoS ONE 8(10), e77251 (2013).
    • 114 Desai GS, Mathews ST. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance. World J. Diabetes 5(6), 730–738 (2014).
    • 115 Lee SY, Choi ME. Urinary biomarkers for early diabetic nephropathy: beyond albuminuria. Pediatr. Nephrol. 30(7), 1063–1075 (2014).
    • 116 Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell Mol. Med. 18(3), 371–390 (2014).