We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Theme: Alzheimer's disease: the biomarker revolution - Review

Correlating familial Alzheimer’s disease gene mutations with clinical phenotype

    Natalie S Ryan

    † Author for correspondence

    Dementia Research Centre, Department of Neurodegenerative Diseases, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK.

    &
    Published Online:https://doi.org/10.2217/bmm.09.92

    Alzheimer’s disease (AD) causes devastating cognitive impairment and an intense research effort is currently devoted to developing improved treatments for it. A minority of cases occur at a particularly young age and are caused by autosomal dominantly inherited genetic mutations. Although rare, familial AD provides unique opportunities to gain insights into the cascade of pathological events and how they relate to clinical manifestations. The phenotype of familial AD is highly variable and, although it shares many clinical features with sporadic AD, it also possesses important differences. Exploring the genetic and pathological basis of this phenotypic heterogeneity can illuminate aspects of the underlying disease mechanism, and is likely to inform our understanding and treatment of AD in the future.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • Rossor MN, Newman S, Frackowiak RS, Lantos P, Kennedy AM: Alzheimer’s disease families with amyloid precursor protein mutations. Ann. NY Acad. Sci.695,198–202 (1993).
    • Goate A, Chartier-Harlin MC, Mullan M et al.: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature349(6311),704–706 (1991).
    • Sherrington R, Rogaev EI, Liang Y et al.: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature375(6534),754–760 (1995).
    • Levy-Lahad E, Wasco W, Poorkaj P et al.: Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science269(5226),973–977 (1995).
    • Rovelet-Lecrux A, Hannequin D, Raux G et al.: APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet.38(1),24–26 (2006).▪ Duplication of the amyloid precursor protein locus was found to be a cause of autosomal dominantly inherited early-onset Alzheimer’s disease (AD), with prominent amyloid angiopathy.
    • Larner AJ, Doran M: Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1gene. J. Neurol.253(2),139–158 (2006).▪ Comprehensive review of the various atypical features reported in association with PSEN1 mutations.
    • Larner AJ, Doran M: Genotype–phenotype relationships of presenilin-1 mutations in Alzheimer’s disease: an update. J. Alzheimers Dis.17(2),259–265 (2009).▪ A further review of the clinical phenomenology of PSEN1 mutations, including some more recently published studies.
    • Selkoe DJ: Alzheimer’s disease: genotypes, phenotypes, and treatments. Science275(5300),630–631 (1997).
    • Nilsberth C, Westlind-Danielsson A, Eckman CB et al.: The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat. Neurosci.4(9),887–893 (2001).
    • 10  Holmes C: Genotype and phenotype in Alzheimer’s disease. Br. J. Psychiatry180,131–134 (2002).
    • 11  Godbolt AK, Cipolotti L, Watt H, Fox NC, Janssen JC, Rossor MN: The natural history of Alzheimer disease: a longitudinal presymptomatic and symptomatic study of a familial cohort. Arch. Neurol.61(11),1743–1748 (2004).
    • 12  Mann DM, Pickering-Brown SM, Takeuchi A, Iwatsubo T: Amyloid angiopathy and variability in amyloid β deposition is determined by mutation position in presenilin-1-linked Alzheimer’s disease. Am. J. Pathol.158(6),2165–2175 (2001).▪ The histopathological profile in PSEN1 mutations appears to be driven by the position of the mutation in the gene, with more severe amyloid angiopathy observed in mutations beyond codon 200.
    • 13  Van Broeckhoven C, Backhovens H, Cruts M et al.: APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer’s disease. Neurosci. Lett.169(1–2),179–180 (1994).
    • 14  Pastor P, Roe CM, Villegas A et al.: Apolipoprotein Ee4 modifies Alzheimer’s disease onset in an E280A PS1 kindred. Ann. Neurol.54(2),163–169 (2003).
    • 15  Fox NC, Warrington EK, Seiffer AL, Agnew SK, Rossor MN: Presymptomatic cognitive deficits in individuals at risk of familial Alzheimer’s disease. A longitudinal prospective study. Brain121(Pt 9),1631–1639 (1998).▪ Neuropsychological deficits, manifested in a decrease in performance IQ and verbal memory scores, are detectable several years prior to symptoms onset in familial AD mutation carriers.
    • 16  Warrington EK, Agnew SK, Kennedy AM, Rossor MN: Neuropsychological profiles of familial Alzheimer’s disease associated with mutations in the presenilin 1 and amyloid precursor protein genes. J. Neurol.248(1),45–50 (2001).
    • 17  Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl Acad. Sci. USA99(7),4703–4707 (2002).▪ Global brain atrophy increases with advancing disease in familial AD, and regional hippocampal atrophy is already occurring prior to the onset of symptoms.
    • 18  Chan D, Janssen JC, Whitwell JL et al.: Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. Lancet362(9390),1121–1122 (2003).
    • 19  Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E: Mild-cognitive impairment: clinical characterization and outcome. Arch. Neurol.56(3),303–308 (1999).
    • 20  Godbolt AK, Beck JA, Collinge J et al.: A presenilin 1 R278I mutation presenting with language impairment. Neurology63(9),1702–1704 (2004).
    • 21  Gorno-Tempini ML, Brambati SM, Ginex V et al.: The logopenic/phonological variant of primary progressive aphasia. Neurology71(16),1227–1234 (2008).
    • 22  Marcon G, Di Fede G, Giaccone G et al.: A novel Italian presenilin 2 gene mutation with prevalent behavioral phenotype. J. Alzheimers Dis.16(3),509–511 (2009).
    • 23  Queralt R, Ezquerra M, Lleo A et al.: A novel mutation (V89L) in the presenilin 1 gene in a family with early-onset Alzheimer’s disease and marked behavioural disturbances. J. Neurol. Neurosurg. Psychiatr.72(2),266–269 (2002).
    • 24  Zekanowski C, Golan MP, Krzysko KA et al.: Two novel presenilin 1 gene mutations connected with frontotemporal dementia-like clinical phenotype: genetic and bioinformatic assessment. Exp. Neurol.200(1),82–88 (2006).
    • 25  Rippon GA, Crook R, Baker M et al.: Presenilin 1 mutation in an African American family presenting with atypical Alzheimer dementia. Arch. Neurol.60(6),884–888 (2003).
    • 26  Raux G, Gantier R, Thomas-Anterion C et al.: Dementia with prominent frontotemporal features associated with L113P presenilin 1 mutation. Neurology55(10),1577–1578 (2000).
    • 27  Amtul Z, Lewis PA, Piper S et al.: A presenilin 1 mutation associated with familial frontotemporal dementia inhibits γ-secretase cleavage of APP and notch. Neurobiol. Dis.9(2),269–273 (2002).
    • 28  Tang-Wai D, Lewis P, Boeve B et al.: Familial frontotemporal dementia associated with a novel presenilin-1 mutation. Dement. Geriatr. Cogn. Disord.14(1),13–21 (2002).
    • 29  Pickering-Brown SM, Baker M, Gass J et al.: Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain129(Pt 11),3124–3126 (2006).
    • 30  Mendez MF, Ghajarania M, Perryman KM: Posterior cortical atrophy: clinical characteristics and differences compared with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.14(1),33–40 (2002).
    • 31  Snider BJ, Norton J, Coats MA et al.: Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch. Neurol.62(12),1821–1830 (2005).
    • 32  Kennedy AM, Newman S, McCaddon A et al.: Familial Alzheimer’s disease. A pedigree with a mis-sense mutation in the amyloid precursor protein gene (amyloid precursor protein 717 valine–>glycine). Brain116(Pt 2),309–324 (1993).
    • 33  Campion D, Brice A, Dumanchin C et al.: A novel presenilin 1 mutation resulting in familial Alzheimer’s disease with an onset age of 29 years. Neuroreport7(10),1582–1584 (1996).
    • 34  Karlstrom H, Brooks WS, Kwok JB et al.: Variable phenotype of Alzheimer’s disease with spastic paraparesis. J. Neurochem.104(3),573–583 (2008).▪ Detailed review of the association between AD and spastic paraparesis.
    • 35  Assini A, Terreni L, Borghi R et al.: Pure spastic paraparesis associated with a novel presenilin 1 R278K mutation. Neurology60(1),150- (2003).
    • 36  Hiltunen M, Helisalmi S, Mannermaa A et al.: Identification of a novel 4.6-kb genomic deletion in presenilin-1 gene which results in exclusion of exon 9 in a Finnish early-onset Alzheimer’s disease family: an Alu core sequence-stimulated recombination?. Eur. J. Hum. Genet.8(4),259–266 (2000).
    • 37  Verkkoniemi A, Somer M, Rinne JO et al.: Variant Alzheimer’s disease with spastic paraparesis: clinical characterization. Neurology54(5),1103–1109 (2000).
    • 38  O’Riordan S, McMonagle P, Janssen JC et al.: Presenilin-1 mutation (E280G), spastic paraparesis, and cranial MRI white-matter abnormalities. Neurology59(7),1108–1110 (2002).
    • 39  Houlden H, Baker M, McGowan E et al.: Variant Alzheimer’s disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-β concentrations. Ann. Neurol.48(5),806–808 (2000).
    • 40  Tabira T, Chui DH, Nakayama H, Kuroda S, Shibuya M: Alzheimer’s disease with spastic paresis and cotton wool type plaques. J. Neurosci. Res.70(3),367–372 (2002).
    • 41  Yokota O, Terada S, Ishizu H et al.: Variability and heterogeneity in Alzheimer’s disease with cotton wool plaques: a clinicopathological study of four autopsy cases. Acta Neuropathol.106(4),348–356 (2003).
    • 42  Dintchov TL, Mehrabian S, Van den BM et al.: Novel PSEN1 mutation in a bulgarian patient with very early-onset Alzheimer’s disease, spastic paraparesis, and extrapyramidal signs. Am. J. Alzheimers Dis. Other Demen.24(5),404–407 (2009).
    • 43  Piscopo P, Marcon G, Piras MR et al.: A novel PSEN2 mutation associated with a peculiar phenotype. Neurology70(17),1549–1554 (2008).
    • 44  Takao M, Ghetti B, Hayakawa I et al.: A novel mutation (G217D) in the presenilin 1 gene (PSEN1) in a Japanese family: presenile dementia and Parkinsonism are associated with cotton wool plaques in the cortex and striatum. Acta Neuropathol.104(2),155–170 (2002).
    • 45  Ishikawa A, Piao YS, Miyashita A et al.: A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer’s disease. Ann. Neurol.57(3),429–434 (2005).
    • 46  Houlden H, Crook R, Dolan RJ, McLaughlin J, Revesz T, Hardy J: A novel presenilin mutation (M233V) causing very early-onset Alzheimer’s disease with Lewy bodies. Neurosci. Lett.313(1–2),93–95 (2001).
    • 47  Lippa CF, Fujiwara H, Mann DM et al.: Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am. J. Pathol.153(5),1365–1370 (1998).
    • 48  Hamilton RL: Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol.10(3),378–384 (2000).
    • 49  Leverenz JB, Fishel MA, Peskind ER et al.: Lewy body pathology in familial Alzheimer disease: evidence for disease- and mutation-specific pathologic phenotype. Arch. Neurol.63(3),370–376 (2006).
    • 50  Cole G, Williams P, Alldryck D, Singharo S: Amyloid plaques in the cerebellum in Alzheimer’s disease. Clin. Neuropathol.8(4),188–191 (1989).
    • 51  Larner AJ: The cerebellum in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.8(4),203–209 (1997).
    • 52  Lemere CA, Lopera F, Kosik KS et al.: The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nat. Med.2(10),1146–1150 (1996).
    • 53  Martin JJ, Gheuens J, Bruyland M et al.: Early-onset Alzheimer’s disease in 2 large Belgian families. Neurology41(1),62–68 (1991).
    • 54  Haltia M, Viitanen M, Sulkava R et al.: Chromosome 14-encoded Alzheimer’s disease: genetic and clinicopathological description. Ann. Neurol.36(3),362–367 (1994).
    • 55  Lampe TH, Bird TD, Nochlin D et al.: Phenotype of chromosome 14-linked familial Alzheimer’s disease in a large kindred. Ann. Neurol.36(3),368–378 (1994).
    • 56  Mann DM, Iwatsubo T, Ihara Y et al.: Predominant deposition of amyloid-β42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene. Am. J. Pathol.148(4),1257–1266 (1996).
    • 57  Mann DM, Jones D, Prinja D, Purkiss MS: The prevalence of amyloid (A4) protein deposits within the cerebral and cerebellar cortex in Down’s syndrome and Alzheimer’s disease. Acta Neuropathol.80(3),318–327 (1990).
    • 58  Mann DM, Iwatsubo T: Diffuse plaques in the cerebellum and corpus striatum in Down’s syndrome contain amyloid β protein (Aβ) only in the form of Aβ42(43). Neurodegeneration5(2),115–120 (1996).
    • 59  Fukutani Y, Cairns NJ, Rossor MN, Lantos PL: Cerebellar pathology in sporadic and familial Alzheimer’s disease including APP 717 (Val-->Ile) mutation cases: a morphometric investigation. J. Neurol. Sci.149(2),177–184 (1997).
    • 60  Piccini A, Zanusso G, Borghi R et al.: Association of a presenilin 1 S170F mutation with a novel Alzheimer disease molecular phenotype. Arch. Neurol.64(5),738–745 (2007).
    • 61  Anheim M, Hannequin D, Boulay C, Martin C, Campion D, Tranchant C: Ataxic variant of Alzheimer’s disease caused by Pro117Ala PSEN1 mutation. J. Neurol. Neurosurg. Psychiatr.78(12),1414–1415 (2007).
    • 62  Dermaut B, Kumar-Singh S, De Jonghe C et al.: Cerebral amyloid angiopathy is a pathogenic lesion in Alzheimer’s disease due to a novel presenilin 1 mutation. Brain124(Pt 12),2383–2392 (2001).
    • 63  Yasuda M, Maeda K, Ikejiri Y, Kawamata T, Kuroda S, Tanaka C: A novel missense mutation in the presenilin-1 gene in a familial Alzheimer’s disease pedigree with abundant amyloid angiopathy. Neurosci. Lett.232(1),29–32 (1997).
    • 64  Steiner H, Revesz T, Neumann M et al.: A pathogenic presenilin-1 deletion causes abberrant Aβ42 production in the absence of congophilic amyloid plaques. J. Biol. Chem.276(10),7233–7239 (2001).
    • 65  Yasuda M, Maeda S, Kawamata T et al.: Novel presenilin-1 mutation with widespread cortical amyloid deposition but limited cerebral amyloid angiopathy. J. Neurol. Neurosurg. Psychiatr.68(2),220–223 (2000).
    • 66  Mullan M, Crawford F, Axelman K et al.: A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet.1(5),345–347 (1992).
    • 67  Van Broeckhoven C, Haan J, Bakker E et al.: Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science248(4959),1120–1122 (1990).
    • 68  Hendriks L, van Duijn CM, Cras P et al.: Presenile dementia and cerebral hemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nat. Genet.1(3),218–221 (1992).
    • 69  Roks G, Van Harskamp F, De K, I et al.: Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692). Brain123(Pt 10),2130–2140 (2000).
    • 70  Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM: Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann. Neurol.49(6),697–705 (2001).
    • 71  Basun H, Bogdanovic N, Ingelsson M et al.: Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch. Neurol.65(4),499–505 (2008).
    • 72  Guyant-Marechal I, Berger E, Laquerriere A et al.: Intrafamilial diversity of phenotype associated with app duplication. Neurology71(23),1925–1926 (2008).
    • 73  Kasuga K, Shimohata T, Nishimura A et al.: Identification of independent APP locus duplication in Japanese patients with early-onset Alzheimer disease. J. Neurol. Neurosurg. Psychiatr.80(9),1050–1052 (2009).
    • 74  Schott JM, Ridha BH, Crutch SJ et al.: Apolipoprotein e genotype modifies the phenotype of Alzheimer disease. Arch. Neurol.63(1),155–156 (2006).
    • 75  Harold D, Abraham R, Hollingworth P et al.: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet.41(10),1088–1093 (2009).
    • 76  Lambert JC, Heath S, Even G et al.: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet.41(10),1094–1099 (2009).
    • 77  Belbin O, Beaumont H, Warden D, Smith AD, Kalsheker N, Morgan K: PSEN1 polymorphisms alter the rate of cognitive decline in sporadic Alzheimer’s disease patients. Neurobiol. Aging30(12),1992–1999 (2009).
    • 78  Beck JA, Poulter M, Campbell TA et al.: Somatic and germline mosaicism in sporadic early-onset Alzheimer’s disease. Hum. Mol. Genet.13(12),1219–1224 (2004).▪ Introduces somatic and germline mosaicism as novel disease mechanisms in AD, reporting an individual demonstrating a PSEN1 mutation in DNA extracted from the cerebral cortex, which was not detectable on peripheral blood sequencing.
    • 79  Weller RO, Boche D, Nicoll JA: Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol.118(1),87–102 (2009).
    • 80  Boche D, Zotova E, Weller RO et al.: Consequence of Aβ immunization on the vasculature of human Alzheimer’s disease brain. Brain131(Pt 12),3299–3310 (2008).
    • 81  Dillen K, Annaert W: A two decade contribution of molecular cell biology to the centennial of Alzheimer’s disease: are we progressing towards therapy? In: International Review of Cytology (Volume 254). Jeon KW (Ed.). Elsevier, 215–300 (2006).
    • 101  Alzheimer Disease and Frontotemporal Dementia Mutation Database www.molgen.ua.ac.be/ADMutations