We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Loss of the tRNALys CUU encoding gene, Chr-11 tRNA-Lys-CUU, is not associated with Type 2 diabetes mellitus

    Pablo Yang

    Cátedra de Biotecnología, Facultad de Ciencias Químicas, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Córdoba, Argentina

    ,
    Dante Miguel Beltramo

    Cátedra de Biotecnología, Facultad de Ciencias Químicas, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Córdoba, Argentina

    ,
    Lluís Ribas de Pouplana

    Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science & Technology, 08028 Barcelona, Catalonia, Spain

    Catalan Institution for Research & Advanced Studies (ICREA), 08010 Barcelona, Catalonia, Spain

    ,
    Néstor Walter Soria

    Cátedra de Biotecnología, Facultad de Ciencias Químicas, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Córdoba, Argentina

    &
    Adrian Gabriel Torres

    *Author for correspondence: Tel.: +34 934 034 867; Fax: +34 934 034 870;

    E-mail Address: adriangabriel.torres@irbbarcelona.org

    Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science & Technology, 08028 Barcelona, Catalonia, Spain

    Published Online:https://doi.org/10.2217/bmm-2018-0322

    Aim: To investigate the presence/absence of the Chr-11 tRNA-Lys-CUU gene as a marker for genetic predisposition to Type 2 diabetes mellitus (T2DM). Methods: We enrolled 122 patients diagnosed with T2DM and 77 non-diabetic individuals. We evaluated clinical and biochemical parameters (body mass index, hypertension, cholesterol levels, glycosylated hemoglobin, triglycerides, etc.), and performed a genotypic profiling of Chr-11 tRNA-Lys-CUU by polymerase chain reaction analyses. Results: Approximately one third of the population lacked Chr-11 tRNA-Lys-CUU. We did not observe a statistically significant association between the presence/absence of Chr-11 tRNA-Lys-CUU and T2DM. Conclusion: The genotypic distribution of Chr-11 tRNA-Lys-CUU in our population was consistent to that reported by others. This gene failed as a marker for T2DM predisposition.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Cho NH, Shaw JE, Karuranga S et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018). •• A global analysis indicating the importance and prevalence of Type 2 diabetes mellitus (T2DM) in the human population.
    • 2 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl. 1), S81–90 (2014).
    • 3 Ambady R, Chamukuttan S. Early diagnosis and prevention of diabetes in developing countries. Rev. Endocr. Metab. Disord. 9(3), 193–201 (2008).
    • 4 Piñeyro D, Torres AG, Ribas de Pouplana L. Biogenesis and Evolution of Functional tRNAs. In: Fungal RNA Biology. Sesma A, Von der Haar T (Eds). Springer International Publishing, Switzerland, 233–267 (2014).
    • 5 Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol. Med. 20(6), 306–314 (2014). •• A systematic review that describes defects in genes encoding tRNA modification enzymes associated to T2DM.
    • 6 Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front. Genet. 5, 158 (2014).
    • 7 van den Ouweland JM, Lemkes HH, Ruitenbeek W et al. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted Type II diabetes mellitus and deafness. Nat. Genet. 1(5), 368–371 (1992). • To the best of our knowledge, this is the first article describing defects on tRNA biology associated to Type 2 diabetes mellitus (T2DM).
    • 8 ‘t Hart LM, Hansen T, Rietveld I et al. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel Type 2 diabetes susceptibility gene. Diabetes. 54(6), 1892–1895 (2005).
    • 9 Xie P, Wei FY, Hirata S, Kaitsuka T, Suzuki T, Tomizawa K. Quantitative PCR measurement of tRNA 2-methylthio modification for assessing Type 2 diabetes risk. Clin. Chem. 59(11), 1604–1612 (2013).
    • 10 Saxena R, Voight BF, Lyssenko V et al. Genome-wide association analysis identifies loci for Type 2 diabetes and triglyceride levels. Science 316(5829), 1331–1336 (2007).
    • 11 Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al. A variant in CDKAL1 influences insulin response and risk of Type 2 diabetes. Nat. Genet. 39(6), 770–775 (2007).
    • 12 Wei FY, Tomizawa K. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of Type 2 diabetes. Endocr. J. 58(10), 819–825 (2011).
    • 13 Stoy J, Steiner DF, Park SY, Ye H, Philipson LH, Bell GI. Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev. Endocr. Metab. Disord. 11(3), 205–215 (2010).
    • 14 Iben JR, Maraia RJ. tRNA gene copy number variation in humans. Gene. 536(2), 376–384 (2014). •• A thorough analysis using data from the 1000 genomes project that reports for the first time the genotipyc variation of Chr-11 tRNA-Lys-CUU in humans and propose its potential role in T2DM.
    • 15 Maraia RJ, Iben JR. Different types of secondary information in the genetic code. RNA. 20(7), 977–984 (2014).
    • 16 Tuller T. The effect of dysregulation of tRNA genes and translation efficiency mutations in cancer and neurodegeneration. Front. Genet. 3, 201 (2012).
    • 17 Rutter MK, Nesto RW. Blood pressure lipids and glucose in Type 2 diabetes: how low should we go? Re-discovering personalized care. Eur. Heart. J. 32(18), 2247–2255 (2011).
    • 18 Swarup S. Metabolic syndrome. In: StatPearls. Zeltser R (Ed.). StatPearls Publishing, Treasure Island, FL, USA (2018).
    • 19 American Diabetes Association. Standards of medical care in diabetes – 2017: summary of revisions. Diabetes Care 40(Suppl. 1), S4–S5 (2017).
    • 20 Torres AG, Ribas de Pouplana L. Transfer RNA Modifications: From Biological Functions to Biomedical Applications. In: Modified Nucleic Acids in Biology and Medicine. Jurga S, Erdmann VA, Barciszewski J (Eds). Springer International Publishing, Basel, Switzerland, 1–26 (2016).
    • 21 Sissler M, Gonzalez-Serrano LE, Westhof E. Recent advances in mitochondrial aminoacyl-trna synthetases and disease. Trends Mol. Med. 23(8), 693–708 (2017).
    • 22 Soares AR, Santos M. Discovery and function of transfer RNA-derived fragments and their role in disease. Wiley Interdiscip. Rev. RNA. 8(5). doi: 10.1002/wrna.1423 (2017).
    • 23 Bartlett JM, Thomas J, Ross DT et al. Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer. Res. 12(4), R47 (2010).
    • 24 Berg M, Agesen TH, Thiis-Evensen E et al. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol. Cancer. 9, 100 (2010).
    • 25 Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44(D1), D184–D189 (2016).
    • 26 Gogakos T, Brown M, Garzia A, Meyer C, Hafner M, Tuschl T. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20(6), 1463–1475 (2017). • Reveals that not all of the tRNA genes encoded in the human genome are actively expressed.
    • 27 Torres AG, Pineyro D, Rodriguez-Escriba M et al. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res. 43(10), 5145–5157 (2015).