We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis

    Alexandre Kanashiro

    *Author for correspondence:

    E-mail Address: alex_bioquimica@yahoo.com.br

    Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil

    Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil

    ,
    Gabriel Shimizu Bassi

    Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

    ,
    Fernando de Queiróz Cunha

    Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil

    &
    Luis Ulloa

    **Author for correspondence:

    E-mail Address: Luis.Ulloa@Rutgers.edu

    Department of Surgery, Center of Immunology & Inflammation, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA

    Published Online:https://doi.org/10.2217/bem-2018-0001

    Neuronal stimulation is an emerging field in modern medicine to control organ function and reestablish physiological homeostasis during illness. The nervous system innervates most of the peripheral organs and provides a fine tune to control the immune system. Most of these studies have focused on vagus nerve stimulation and the physiological, cellular and molecular mechanisms regulating the immune system. Here, we review the new results revealing afferent vagal signaling pathways, immunomodulatory brain structures, spinal cord-dependent circuits, neural and non-neural cholinergic/catecholaminergic signals and their respective receptors contributing to neuromodulation of inflammation in rheumatoid arthritis. These new neuromodulatory networks and structures will allow the design of innovative bioelectronic or pharmacological approaches for safer and low-cost treatment of arthritis and related inflammatory disorders.

    References

    • 1 Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).
    • 2 Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4, S265 (2002).
    • 3 Edrees AF, Misra SN, Abdou NI. Anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis: correlation of TNF-α serum level with clinical response and benefit from changing dose or frequency of infliximab infusions. Clin. Exp. Rheumatol. 23, 469–474.
    • 4 Inui K, Koike T. Combination therapy with biologic agents in rheumatic diseases: current and future prospects. Ther. Adv. Musculoskelet. Dis. 8, 192–202 (2016).
    • 5 Upchurch KS, Kay J. Evolution of treatment for rheumatoid arthritis Rheumatology (Oxford) 51(Suppl. 6), vi28–vi36 (2012).
    • 6 Mertens M, Singh JA. Anakinra for rheumatoid arthritis: a systematic review. J. Rheumatol. 36, 1118–1125 (2009).
    • 7 Singh JA, Christensen R, Wells GA et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. In: Cochrane Database of Systematic Reviews. Singh JA (Ed.). John Wiley & Sons, Ltd, Chichester, UK, p CD007848 (2009).
    • 8 Raimondo MG, Biggioggero M, Crotti C, Becciolini A, Favalli EG. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Des. Devel. Ther. 11, 1593–1603 (2017).
    • 9 Tanaka T, Narazaki M, Kishimoto T. Interleukin (IL-6) immunotherapy. Cold Spring Harb. Perspect. Biol. a028456 (2017).
    • 10 Emery P, Keystone E, Tony HP et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 67, 1516–1523 (2008).
    • 11 Favalli EG, Desiati F, Atzeni F et al. Serious infections during anti-TNFα treatment in rheumatoid arthritis patients. Autoimmun. Rev. 8, 266–273 (2009).
    • 12 Inanc N, Direskeneli H. Serious infections under treatment with TNF-α antagonists compared to traditional DMARDs in patients with rheumatoid arthritis. Rheumatol. Int. 27, 67–71 (2006).
    • 13 Yamanaka H. TNF as a target of inflammation in rheumatoid arthritis. Endocr. Metab. Immune Disord. Drug Targets 15, 129–134 (2015).
    • 14 Ulloa L, Quiroz-Gonzalez S, Torres-Rosas R. Nerve stimulation: immunomodulation and control of inflammation. Trends Mol. Med. 23, 1103–1120 (2017).
    • 15 Tracey KJ. The inflammatory reflex. Nature 420, 853–859 (2002).
    • 16 Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46, 927–942 (2017).
    • 17 Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol. Ther. 179, 1–16 (2017).
    • 18 Waldburger J-M, Firestein GS. Regulation of peripheral inflammation by the central nervous system. Curr. Rheumatol. Rep. 12, 370–378 (2010).
    • 19 Borovikova LV, Ivanova S, Zhang M et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).
    • 20 Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J. Intern. Med. 282, 46–63 (2017).
    • 21 De Herdt V, Puimege L, De Waele J et al. Increased rat serum corticosterone suggests immunomodulation by stimulation of the vagal nerve. J. Neuroimmunol. 212, 102–105 (2009).
    • 22 Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 282, 64–75 (2017).
    • 23 van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 229–232 (2009).
    • 24 Bassi GS, Dias DPM, Franchin M et al. Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain, Behav. Immun. 64, 330–343 (2017).
    • 25 Tak PP. Interview with Paul-Peter Tak: stimulating the vagus nerve to treat rheumatoid arthritis. Bioelectron. Med. 1(1), 17–20 (2018).
    • 26 Levine YA, Koopman FA, Faltys M et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PloS ONE 9, e104530 (2014).
    • 27 Koopman FA, Chavan SS, Miljko S et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 113, 8284–8289 (2016).
    • 28 Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton. Neurosci. 182, 65–69 (2014).
    • 29 Bassi GS, Ulloa L, Santos VR et al. Cortical stimulation in conscious rats controls joint inflammation. Progress in neuro-psychopharmacology and biological psychiatry. 84, 201–213 (2018).
    • 30 Cai B, Dong W, Sharpe S, Deitch EA, Ulloa L. Survival and inflammatory responses in experimental models of hemorrhage. J. Surg. Res. 169, 257–266 (2011).
    • 31 Ulloa L, Deitch EA. Neuroimmune perspectives in sepsis. Crit. Care 13, 133 (2009).
    • 32 Ulloa L, Tracey KJ. The ‘cytokine profile’: a code for sepsis. Trends Mol. Med. 11, 56–63 (2005).
    • 33 Kanashiro A, Sônego F, Ferreira RG et al. Therapeutic potential and limitations of cholinergic anti-inflammatory pathway in sepsis. Pharmacol. Res. 117, 1–8 (2017).
    • 34 Cai B, Deitch EA, Ulloa L. Novel insights for systemic inflammation in sepsis and hemorrhage. Mediators Inflamm. 2010, 1–10 (2010).
    • 35 Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat. Rev. Drug Discov. 4, 673–684 (2005).
    • 36 Rasmussen SE, Pfeiffer-Jensen M, Drewes AM et al. Vagal influences in rheumatoid arthritis. Scand. J. Rheumatol. 47, 1–11 (2018).
    • 37 Zhang Q, Lu Y, Bian H, Guo L, Zhu H. Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am. J. Transl. Res. 9, 971–985 (2017).
    • 38 Pinheiro NM, Santana FPR, Almeida RR et al. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. FASEB J. 31, 320–332 (2017).
    • 39 Watkins LR, Goehler LE, Relton JK et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 183, 27–31 (1995).
    • 40 Ardell JL, Rajendran PS, Nier HA, KenKnight BH, Armour JA. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. Am. J. Physiol. Heart Circ. Physiol. 309, H1740-52 (2015).
    • 41 Kember G, Ardell JL, Armour JA, Zamir M. Vagal nerve stimulation therapy: what is being stimulated? PLoS ONE 9, e114498 (2014).
    • 42 Rosas-Ballina M, Olofsson PS, Ochani M et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).
    • 43 Rosas-Ballina M, Ochani M, Parrish WR et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).
    • 44 Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 97, 1180–1185 (2012).
    • 45 Romanovsky AA. The inflammatory reflex: the current model should be revised. Exp. Physiol. 97, 1178–1179 (2012).
    • 46 Grimsholm O, Rantapää-Dahlqvist S, Dalén T, Forsgren S. Unexpected finding of a marked non-neuronal cholinergic system in human knee joint synovial tissue. Neurosci. Lett. 442, 128–133 (2008).
    • 47 Vida G, Peña G, Deitch EA, Ulloa L. α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J. Immunol. 186, 4340–4346 (2011).
    • 48 Vida G, Peña G, Kanashiro A et al. β2-adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 25, 4476–4485 (2011).
    • 49 Pena G, Cai B, Ramos L, Vida G, Deitch EA, Ulloa L. Cholinergic regulatory lymphocytes re-establish neuromodulation of innate immune responses in sepsis. J. Immunol. 187, 718–725 (2011).
    • 50 Pavlov VA, Tracey KJ. Neural circuitry and immunity. Immunol. Res. 63, 38–57 (2015).
    • 51 Huston JM, Ochani M, Rosas-Ballina M et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. 203, 1623–1628 (2006).
    • 52 Wang H, Yu M, Ochani M et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2002).
    • 53 Bernik TR, Friedman SG, Ochani M et al. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J. Vas. Surg. 36, 1231–1236 (2002).
    • 54 Altavilla D, Guarini S, Bitto A et al. Activation of the cholinergic anti-inflammatory pathway reduces NF-κB activation, blunts TNF-α production, and protects againts splanchic artery occlusion shock. Shock 25, 500–506 (2006).
    • 55 Cai B, Chen F, Ji Y et al. Alpha7 cholinergic-agonist prevents systemic inflammation and improves survival during resuscitation. J. Cell. Mol. Med. 13, 3774–3785 (2009).
    • 56 Grech D, Li Z, Morcillo P et al. Intraoperative low-frequency electroacupuncture under general anesthesia improves postoperative recovery in a randomized trial. J. Acupunct. Meridian Stud. 9, 234–241 (2016).
    • 57 van Westerloo DJ, Giebelen IA, Florquin S et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130, 1822–1830 (2006).
    • 58 Wang H, Liao H, Ochani M et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10, 1216–1221 (2004).
    • 59 van Westerloo DJ, Giebelen IAJ, Florquin S et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J. Infect. Dis. 191, 2138–2148 (2005).
    • 60 Tracey KJ, Fong Y, Hesse DG et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330, 662–664 (1987).
    • 61 Carré JE, Singer M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim. Biophys. Acta 1777, 763–771 (2008).
    • 62 Remick D, Manohar P, Bolgos G, Rodriguez J, Moldawer L, Wollenberg G. Blockade of tumor necrosis factor reduces lipopolysaccharide lethality, but not the lethality of cecal ligation and puncture. Shock 4, 89–95 (1995).
    • 63 Eskandari MK, Bolgos G, Miller C, Nguyen DT, DeForge LE, Remick DG. Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J. Immunol. 148, 2724–2730 (1992).
    • 64 Peña G, Cai B, Liu J et al. Unphosphorylated STAT3 modulates alpha7 nicotinic receptor signaling and cytokine production in sepsis. Eur. J. Immunol. 40, 2580–2589 (2010).
    • 65 Peña G, Cai B, Deitch EA, Ulloa L. JAK2 inhibition prevents innate immune responses and rescues animals from sepsis. J. Mol. Med. 88, 851–859 (2010).
    • 66 Ulloa L. The cholinergic anti-inflammatory pathway meets microRNA. Cell Res. 23, 1249–1250 (2013).
    • 67 Pullan RD, Rhodes J, Ganesh S et al. Transdermal nicotine for active ulcerative colitis. N. Engl. J. Med. 330, 811–815 (1994).
    • 68 Cho Y-G, Cho M-L, Min S-Y, Kim H-Y. Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun. Rev. 7, 65–70 (2007).
    • 69 Lindblad SS, Mydel P, Jonsson I-M, Senior RM, Tarkowski A, Bokarewa M. Smoking and nicotine exposure delay development of collagen-induced arthritis in mice. Arthritis Res. Ther. 11, R88 (2009).
    • 70 van Maanen MA, Lebre MC, van der Poll T et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 60, 114–122 (2009).
    • 71 Li T, Zuo X, Zhou Y et al. The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis. J. Clin. Immunol. 30, 213–220 (2010).
    • 72 van Maanen MA, Stoof SP, LaRosa GJ, Vervoordeldonk MJ, Tak PP. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor 7 subunit gene knockout mice. Ann. Rheum. Dis. 69, 1717–1723 (2010).
    • 73 Bruchfeld A, Goldstein RS, Chavan S et al. Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J. Intern. Med. 268, 94–101 (2010).
    • 74 Waldburger J-M, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS. Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum. 58, 3439–3449 (2008).
    • 75 Wu S, Luo H, Xiao X, Zhang H, Li T, Zuo X. Attenuation of collagen induced arthritis via suppression on Th17 response by activating cholinergic anti-inflammatory pathway with nicotine. Eur. J. Pharmacol. 735, 97–104 (2014).
    • 76 Yang Y, Yang Y, Yang J, Xie R, Ren Y, Fan H. Regulatory effect of nicotine on collagen-induced arthritis and on the induction and function of in vitro-cultured Th17 cells. Mod. Rheumatol. 24, 781–787 (2014).
    • 77 Li S, Zhou B, Liu B et al. Activation of the cholinergic anti-inflammatory system by nicotine attenuates arthritis via suppression of macrophage migration. Mol. Med. Rep. 14, 5057–5064 (2016).
    • 78 Kotake S, Udagawa N, Takahashi N et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).
    • 79 Shahrara S, Pickens SR, Dorfleutner A, Pope RM. IL-17 induces monocyte migration in rheumatoid arthritis. J. Immunol. 182, 3884–3891 (2009).
    • 80 Ziolkowska M, Koc A, Luszczykiewicz G et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J. Immunol. 164, 2832–2838 (2000).
    • 81 Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).
    • 82 Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. immunol. 6, 1133–1141 (2005).
    • 83 Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).
    • 84 Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).
    • 85 Hoeve MA, Savage NDL, de Boer T et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur. J. Immunol. 36, 661–670 (2006).
    • 86 Wang D, Zhou R, Yao Y et al. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J. Pharmacol. Exp. Ther. 335, 553–561 (2010).
    • 87 Grando SA, Pittelkow MR, Schallreuter KU. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Investig. Dermatol. 126, 1948–1965 (2006).
    • 88 Leite PEC, Gandía L, de Pascual R et al. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice. Brain Res. 1573, 27–36 (2014).
    • 89 Kurzen H, Berger H, Jäger C et al. Phenotypical and molecular profiling of the extraneuronal cholinergic system of the skin. J. Investig. Dermatol. 123, 937–949 (2004).
    • 90 Pereira MR, Leite PEC. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J. Cell. Physiol. 231, 1862–1869 (2016).
    • 91 Westman M, Engström M, Catrina AI, Lampa J. Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis. Scand. J. Immunol. 70, 136–140 (2009).
    • 92 Van Maanen MA, Stoof SP, Van Der Zanden EP et al. The α7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: a possible role for a key neurotransmitter in synovial inflammation. Arthritis Rheum. 60, 1272–1281 (2009).
    • 93 Zhou Y, Zuo X, Li Y, Wang Y, Zhao H, Xiao X. Nicotine inhibits tumor necrosis factor-α induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol. Int. 32, 97–104 (2012).
    • 94 Hosseinzadeh A, Thompson PR, Segal BH, Urban CF. Nicotine induces neutrophil extracellular traps. J. Leukoc. Biol. 100, 1105–1112 (2016).
    • 95 Lee J, Luria A, Rhodes C et al. Nicotine drives neutrophil extracellular traps formation and accelerates collagen-induced arthritis. Rheumatology (Oxford) 56, kew449 (2016).
    • 96 Baka Z, Buzás E, Nagy G. Rheumatoid arthritis and smoking: putting the pieces together. Arthritis Res. Ther. 11, 238 (2009).
    • 97 Yu H, Yang Y-H, Rajaiah R, Moudgil KD. Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. Arthritis Rheum. 63, 981–991 (2011).
    • 98 Härle P, Möbius D, Carr DJJ, Schölmerich J, Straub RH. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum. 52, 1305–1313 (2005).
    • 99 Härle P, Pongratz G, Albrecht J, Tarner IH, Straub RH. An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells. Arthritis Rheum. 58, 2347–2355 (2008).
    • 100 Miller LE, Jüsten HP, Schölmerich J, Straub RH. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J. 14, 2097–2107 (2000).
    • 101 Capellino S, Cosentino M, Wolff C et al. Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann. Rheum. Dis. 69, 1853–1860 (2010).
    • 102 Pongratz G, Melzer M, Straub RH. The sympathetic nervous system stimulates anti-inflammatory B cells in collagen-type II-induced arthritis. Ann. Rheum. Dis. 71, 432–439 (2012).
    • 103 Buijs RM, van der Vliet J, Garidou M-L, Huitinga I, Escobar C. Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS ONE 3, e3152 (2008).
    • 104 McAllen RM, Cook AD, Khiew HW, Martelli D, Hamilton JA. The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Res. Ther. 17, 87 (2015).
    • 105 Li T, Zuo X, Zhou Y et al. The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis. J. Clin. Immunol. 30, 213–220 (2010).
    • 106 Simons CT, Kulchitsky VA, Sugimoto N, Homer LD, Székely M, Romanovsky AA. Signaling the brain in systemic inflammation: which vagal branch is involved in fever genesis? Am. J. Physiol. 275, R63-R68 (1998).
    • 107 Kimpel D, Dayton T, Fuseler J et al. Splenectomy attenuates streptococcal cell wall-induced arthritis and alters leukocyte activation. Arthritis Rheum. 48, 3557–3567 (2003).
    • 108 Rahman J, Staines NA. Contribution of the spleen, lymph nodes and bone marrow to the antibody response in collagen-induced arthritis in the rat. Clin. Exp. Immunol. 85, 48–54 (1991).
    • 109 Bassi GS, Brognara F, Castania JA et al. Baroreflex activation in conscious rats modulates the joint inflammatory response via sympathetic function. Brain Behav. Immun. 49, 140–147 (2015).
    • 110 Balint GP, Balint PV. Felty's syndrome. Best pract. Res. Clin. Rheumatol. 18, 631–645 (2004).
    • 111 Bradley JD, Pinals RS. Felty's syndrome presenting without arthritis. Clin. Exp. Rheumatol. 1, 257–259 (1983).
    • 112 Uluhan A, Sager D, Jasin HE. Juvenile rheumatoid arthritis and common variable hypogammaglobulinemia. J. Rheumatol. 25, 1205–1210 (1998).
    • 113 Matteoli G, Gomez-Pinilla PJ, Nemethova A et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63, 938–948 (2014).
    • 114 Olofsson PS, Lavine Y, Caravaca A et al. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron. Med. 2, 37–42 (2015).
    • 115 Inoue T, Abe C, Sung SJ et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J. Clin. Investig. 126, 1939–1952 (2016).
    • 116 Verlinden TJM, Rijkers K, Hoogland G, Herrler A. Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Acta Neurol. Scand. 133, 173–182 (2016).
    • 117 Seki A, Green HR, Lee TD et al. Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Heart Rhythm 11, 1411–1417 (2014).
    • 118 Kox M, van Eijk LT, Zwaag J et al. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proc. Natl Acad. Sci. USA 111, 7379–7384 (2014).
    • 119 Martelli D, Yao ST, Mancera J, McKinley MJ, McAllen RM. Reflex control of inflammation by the splanchnic anti-inflammatory pathway is sustained and independent of anesthesia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1085–R1091 (2014).
    • 120 Elenkov IJ, Haskó G, Kovács KJ, Vizi ES. Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. J. Neuroimmunol. 61, 123–131 (1995).
    • 121 Abe C, Inoue T, Inglis MA et al. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat. Neurosci. 20, 700–707 (2017).
    • 122 Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat. Neurosci. 2, 94–98 (1999).
    • 123 Barnes A, Duncan R, Chisholm JA et al. Investigation into the mechanisms of vagus nerve stimulation for the treatment of intractable epilepsy, using 99mTc-HMPAO SPET brain images. Eur. J. Nucl. Med. Mol. Imaging 30, 301–305 (2003).
    • 124 Henry TR, Bakay RA, Votaw JR et al. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia 39, 983–990 (1998).
    • 125 Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res. 22, 53–62 (1995).
    • 126 Cunningham JT, Mifflin SW, Gould GG, Frazer A. Induction of c-Fos and DeltaFosB immunoreactivity in rat brain by vagal nerve stimulation. Neuropsychopharmacology 33, 1884–1895 (2008).
    • 127 Thompson M, Bywaters EG. Unilateral rheumatoid arthritis following hemiplegia. Ann. Rheum. Dis. 21, 370–377 (1962).
    • 128 Glick EN. Asymmetrical rheumatoid arthritis after poliomyelitis. BMJ 3, 26–28 (1967).
    • 129 Hamilton S. Unilateral rheumatoid arthritis in hemiplegia. J. Can. Assoc. Radiol. 34, 49–50 (1983).
    • 130 Lapadula G, Iannone F, Zuccaro C, Covelli M, Grattagliano V, Pipitone V. Recovery of erosive rheumatoid arthritis after human immunodeficiency virus-1 infection and hemiplegia. J. Rheumatol. 24, 747–751 (1997).
    • 131 Stangenberg L, Burzyn D, Binstadt BA et al. Denervation protects limbs from inflammatory arthritis via an impact on the microvasculature. Proc. Natl Acad. Sci. USA 111, 11419–11424 (2014).
    • 132 Coderre TJ, Chan AK, Helms C, Basbaum AI, Levine JD. Increasing sympathetic nerve terminal-dependent plasma extravasation correlates with decreased arthritic joint injury in rats. Neuroscience 40, 185–189 (1991).
    • 133 Green PG, Miao FJ, Jänig W, Levine JD. Negative feedback neuroendocrine control of the inflammatory response in rats. The J. Neurosci. 15, 4678–4686 (1995).
    • 134 Miao FJ, Jänig W, Levine JD. Vagal branches involved in inhibition of bradykinin-induced synovial plasma extravasation by intrathecal nicotine and noxious stimulation in the rat. J. Physiol. 498(Pt 2), 473–481 (1997).
    • 135 Miao FJ, Green PG, Coderre TJ, Jänig W, Levine JD. Sympathetic-dependence in bradykinin-induced synovial plasma extravasation is dose-related. Neurosci. Lett. 205, 165–168 (1996).
    • 136 Miao FJ, Jänig W, Dallman MF et al. Role of vagal afferents and spinal pathways modulating inhibition of bradykinin-induced plasma extravasation by intrathecal nicotine. J. Neurophysiol. 72, 1199–1207 (1994).
    • 137 Martelli D, Yao ST, McKinley MJ, McAllen RM. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol. 592, 1677–1686 (2014).
    • 138 Willemze RA, Luyer MD, Buurman WA, de Jonge WJ. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy. Nat. Rev. Gastroenterol. Hepatol. 12, 353–362 (2015).
    • 139 Levine YA, Koopman FA, Faltys M et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS ONE 9, e104530 (2014).
    • 140 Schaible H-G, Straub RH. Function of the sympathetic supply in acute and chronic experimental joint inflammation. Auton. Neurosci. 182, 55–64 (2014).
    • 141 Sato Y, Schaible HG. Discharge characteristics of sympathetic efferents to the knee joint of the cat. J. Auton. Nerv. Sys. 19, 95–103 (1987).
    • 142 Benarroch EE. The arterial baroreflex: functional organization and involvement in neurologic disease. Neurology 71, 1733–1738 (2008).
    • 143 Vitale F, Litt B. Bioelectronics: the promise of leveraging the body's circuitry to treat disease. Bioelectron. Med. 1, 3–7 (2018).
    • 144 Rehman AA, Elmore KB, Mattei TA. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg. focus 38, E14 (2015).
    • 145 Shawki MM, Farid A. Low electric field parameters required to induce death of cancer cells. Electromagn. Biol. Med. 33, 159–163 (2014).
    • 146 Birmingham K, Gradinaru V, Anikeeva P et al. Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Dis. 13, 399–400 (2014).
    • 147 Suzuki K, Nakai A. Immune modulation by neuronal electric shock waves. J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2018.02.027 (2018) (Epub ahead of print).
    • 148 Murray K, Reardon C. The cholinergic anti-inflammatory pathway revisited. Neurogastroenterol. Motil. 30, e13288 (2018).
    • 149 Botha C, Farmer AD, Nilsson M et al. Preliminary report: modulation of parasympathetic nervous system tone influences oesophageal pain hypersensitivity. Gut 64, 611–617 (2015).
    • 150 Wheless JW, Baumgartner J. Vagus nerve stimulation therapy. Drugs Today 40, 501–515 (2004).
    • 151 Carreno FR, Frazer A. Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics 14, 716–727 (2017).
    • 152 Mwamburi M, Liebler EJ, Tenaglia AT. Review of non-invasive vagus nerve stimulation (gammaCore): efficacy, safety, potential impact on comorbidities, and economic burden for episodic and chronic cluster headache. Am. J. Manag. Care 23, S317–S325 (2017).
    • 153 Simon B, Blake J. Mechanism of action of non-invasive cervical vagus nerve stimulation for the treatment of primary headaches. Am. J. Manag. care 23, S312–S316 (2017).
    • 154 Stefan H, Kreiselmeyer G, Kerling F et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53, e115–e118 (2012).
    • 155 Lerman I, Hauger R, Sorkin L et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation 19, 283–290 (2016).
    • 156 Brock C, Brock B, Aziz Q et al. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol. Motil. 29, e12999 (2017).
    • 157 Zhao YX, He W, Jing XH et al. Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid.-Based Complementary Altern. Med. 2012, 1–10 (2012).
    • 158 Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. Control of lymphocyte egress from lymph nodes through β 2 -adrenergic receptors. J. Exp. Med. 211, 2583–2598 (2014).
    • 159 Kanashiro A, Talbot J, Peres RS et al. Neutrophil recruitment and articular hyperalgesia in antigen-induced arthritis are modulated by the cholinergic anti-inflammatory pathway. Basic Clin. Pharmacol. Toxicol. 119, 453–457 (2016).
    • 160 Gowayed MA, Refaat R, Ahmed WM, El-Abhar HS. Effect of galantamine on adjuvant-induced arthritis in rats. Eur. J. Pharmacol. 764, 547–553 (2015).
    • 161 Malfait AM, Malik AS, Marinova-Mutafchieva L, Butler DM, Maini RN, Feldmann M. The beta2-adrenergic agonist salbutamol is a potent suppressor of established collagen-induced arthritis: mechanisms of action. J. Immunol. 162, 6278–6283 (1999).
    • 162 Cobelens PM, Kavelaars A, Vroon A et al. The beta 2-adrenergic agonist salbutamol potentiates oral induction of tolerance, suppressing adjuvant arthritis and antigen-specific immunity. J. Immunol. 169, 5028–5035 (2002).
    • 163 Pavlov VA, Ochani M, Gallowitsch-Puerta M et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl Acad. Sci. USA 103, 5219–5223 (2006).
    • 164 Beckmann J, Dittmann N, Schütz I, Klein J, Lips KS. Effect of M3 muscarinic acetylcholine receptor deficiency on collagen antibody-induced arthritis. Arthritis Res. Ther. 18, 17 (2016).
    • 165 Delgado M, Abad C, Martinez C et al. Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J. Mol. Med. 80, 16–24 (2002).
    • 166 Kanashiro A, Franchin M, Bassi GS et al. Inhibition of spinal p38 MAPK prevents articular neutrophil infiltration in experimental arthritis via sympathetic activation. Fundam. Clin. Pharmacol. 32, 155–162 (2017).
    • 167 Bassi GS, do C Malvar D, Cunha TM, Cunha FQ, Kanashiro A. Spinal GABA-B receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis. Naunyn Schmiedeberg Arc. Pharmacol. 389, 851–861 (2016).
    • 168 Boyle DL, Jones TL, Hammaker D et al. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats. PLoS Med. 3, e338 (2016).
    • 169 Bruchfeld A, Goldstein RS, Chavan S et al. Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J. Intern. Med. 268, 94–101 (2010).
    • 170 Evrengul H, Dursunoglu D, Cobankara V et al. Heart rate variability in patients with rheumatoid arthritis. Rheumatol. Int. 24, 198–202 (2004).
    • 171 Goldstein RS, Bruchfeld A, Yang L et al. Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med. 13, 210–215 (2007).
    • 172 Koopman FA, Tang MW, Vermeij J et al. Autonomic dysfunction precedes development of rheumatoid arthritis: a prospective cohort study. EBioMedicine 6, 231–237 (2016).
    • 173 Holman AJ, Ng E. Heart rate variability predicts anti-tumor necrosis factor therapy response for inflammatory arthritis. Auton. Neurosci. 143, 58–67 (2008).
    • 174 Gigliotti JC, Huang L, Ye H et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J. Am. Soc. Nephrol. 24, 1451–1460 (2013).
    • 175 Torres-Rosas R, Yehia G, Pena G et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 20, 291–295 (2014).
    • 176 Zhu J, Chen X-Y, Li L-B et al. Electroacupuncture attenuates collagen-induced arthritis in rats through vasoactive intestinal peptide signalling-dependent re-establishment of the regulatory T cell/T-helper 17 cell balance. Acupunct. Med. 33, 305–311 (2015).
    • 177 Li J, Li J, Chen R, Cai G. Targeting NF-κB and TNF-α activation by electroacupuncture to suppress collagen-induced rheumatoid arthritis in model rats. Altern. Ther. Health Med. 21, 26–34 (2015).
    • 178 Dong Z-Q, Zhu J, Lu D, Chen Q, Xu Y. Effect of electroacupuncture in ‘Zusanli’ and ‘Kunlun’ acupoints on TLR4 signaling pathway of adjuvant arthritis rats. Am. J. Ther. 25, 314–319 (2018).
    • 179 Ouyang B, Gao J, Che J et al. Effect of electro-acupuncture on tumor necrosis factor-α and vascular endothelial growth factor in peripheral blood and joint synovia of patients with rheumatoid arthritis. Chin. J. Integr. Med. 17, 505–509 (2011).
    • 180 Lu J-H, Liu Y-Q, Deng Q-W, Peng Y-P, Qiu Y-H. Dopamine D2 receptor is involved in alleviation of Type II collagen-induced arthritis in mice. BioMed Res. Int. 2015, 496759 (2015).
    • 181 Révész D, Rydenhag B, Ben-Menachem E. Complications and safety of vagus nerve stimulation: 25 years of experience at a single center. J. Neurosurg. Pediatr. 18, 97–104 (2016).
    • 182 Kahlow H, Olivecrona M. Complications of vagal nerve stimulation for drug-resistant epilepsy. Seizure 22, 827–833 (2013).
    • 183 Engel O, Akyüz L, da Costa Goncalves AC et al. Cholinergic pathway suppresses pulmonary innate immunity facilitating pneumonia after stroke. Stroke 46, 3232–3240 (2015).
    • 184 Prass K, Meisel C, Höflich C et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell Type 1–like immunostimulation. J. Exp. Med. 198, 725–736 (2003).
    • 185 Wong CHY, Jenne CN, Lee W-Y, Léger C, Kubes P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).
    • 186 Irmler IM, Gajda M, Kamradt T. Amelioration of experimental arthritis by stroke-induced immunosuppression is independent of Treg cell function. Ann. Rheum. Dis. 73, 2183–2191 (2014).