We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Chemokine–chemokine receptors in cancer immunotherapy

    Trina J Stewart

    † Author for correspondence

    Cancer Immunology Research Program, The Peter MacCallum Cancer Centre, Level 2 Smorgon Family Building, St Andrews Place, East Melbourne, Victoria, 3002, Australia.

    &
    Mark J Smyth

    Cancer Immunology Research Program, The Peter MacCallum Cancer Centre, Level 2 Smorgon Family Building, St Andrews Place, East Melbourne, Victoria, 3002, Australia.

    Published Online:https://doi.org/10.2217/1750743X.1.1.109

    A surge in interest in the chemokine–chemokine receptor network is probably related to the expanding roles that chemokines have now been identified to play in human biology, particularly immunity. Specific tissue microenvironments express distinct chemokines and both hematopoietic and nonhematopoietic cells have receptor expression profiles that permit the coordinated trafficking and organization of cells within these specific tissues. Since the chemokine network plays critical roles in both the function of the immune system and the progression of cancer, it is an attractive target for therapeutic manipulation. This review will focus on chemokine and chemokine receptor network-related therapeutic interventions that utilize host–tumor interactions particularly involving the immune system.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interestb

    Bibliography

    • Zlotnik A: Chemokines and cancer. Int. J. Cancer119,2026–2029 (2006).
    • Moser B, Wolf M, Walz A, Loetscher P: Chemokines: multiple levels of leukocyte migration control. Trends Immunol.25,75–84 (2004).
    • Le Y, Zhou Y, Iribarren P, Wang J: Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell. Mol. Immunol.1,95–104 (2004).
    • Murdoch C, Finn A: Chemokine receptors and their role in inflammation and infectious diseases. Blood95,3032–3043 (2000).
    • Allavena P, Sica A, Vecchi A, Locati M, Sozzani S, Mantovani A: The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol. Rev.177,141–149 (2000).
    • Dieu MC, Vanbervliet B, Vicari A et al.: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med.188,373–386 (1998).
    • Kim CH, Broxmeyer HE: Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J. Leukoc. Biol.65,6–15 (1999).
    • Ebert LM, Schaerli P, Moser B: Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol. Immunol.42,799–809 (2005).
    • Caux C, Ait-Yahia S, Chemin K et al.: Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin. Immunopathol.22,345–369 (2000).
    • 10  McColl SR: Chemokines and dendritic cells: a crucial alliance. Immunol. Cell Biol.80,489–496 (2002).
    • 11  Balkwill F: Cancer and the chemokine network. Nat. Rev. Cancer4,540–550 (2004).
    • 12  Homey B, Muller A, Zlotnik A: Chemokines: agents for the immunotherapy of cancer? Nat. Rev. Immunol.2,175–184 (2002).
    • 13  Meijer J, Ogink J, Kreike B, Nuyten D, de Visser KE, Roos E: The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation. Cancer Res.68,4701–4708 (2008).
    • 14  Belperio JA, Keane MP, Arenberg DA et al.: CXC chemokines in angiogenesis. J. Leukoc. Biol.68,1–8 (2000).
    • 15  Salcedo R, Wasserman K, Young HA et al.: Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1α. Am. J. Pathol.154,1125–1135 (1999).
    • 16  Bernardini G, Spinetti G, Ribatti D et al.: I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. Blood96,4039–4045 (2000).
    • 17  Salcedo R, Young HA, Ponce ML et al.: Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J. Immunol.166,7571–7578 (2001).
    • 18  Tse KP, Tsang NM, Chen KD et al.: MCP-1 Promoter polymorphism at 2518 is associated with metastasis of nasopharyngeal carcinoma after treatment. Clin. Cancer Res.13,6320–6326 (2007).
    • 19  Ghilardi G, Biondi ML, La Torre A, Battaglioli L, Scorza R: Breast cancer progression and host polymorphisms in the chemokine system: role of the macrophage chemoattractant protein-1 (MCP-1) -2518 G allele. Clin. Chem.51,452–455 (2005).
    • 20  Azenshtein E, Luboshits G, Shina S et al.: The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res.62,1093–1102 (2002).
    • 21  Manes S, Mira E, Colomer R et al.: CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. J. Exp. Med.198,1381–1389 (2003).
    • 22  Zou W, Machelon V, Coulomb-L’Hermin A et al.: Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med.7,1339–1346 (2001).
    • 23  Nahon P, Sutton A, Rufat P et al.: Chemokine system polymorphisms, survival and hepatocellular carcinoma occurrence in patients with hepatitis C virus-related cirrhosis. World J. Gastroenterol.14,713–719 (2008).
    • 24  Savage SA, Abnet CC, Mark SD et al.: Variants of the IL8 and IL8RB genes and risk for gastric cardia adenocarcinoma and esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev.13,2251–2257 (2004).
    • 25  Vairaktaris E, Yapijakis C, Serefoglou Z et al.: The interleukin-8 (-251A/T) polymorphism is associated with increased risk for oral squamous cell carcinoma. Eur. J. Surg. Oncol.33,504–507 (2007).
    • 26  Ben Nasr H, Chahed K, Mestiri S, Bouaouina N, Snoussi K, Chouchane L: Association of IL-8 (-251)T/A polymorphism with susceptibility to and aggressiveness of nasopharyngeal carcinoma. Hum. Immunol.68,761–769 (2007).
    • 27  Snoussi K, Mahfoudh W, Bouaouina N, Ahmed SB, Helal AN, Chouchane L: Genetic variation in IL-8 associated with increased risk and poor prognosis of breast carcinoma. Hum. Immunol.67,13–21 (2006).▪ Along with [28], two recent papers that report a correlation of CXCL8 polymorphisms and breast cancer.
    • 28  Kamali-Sarvestani E, Aliparasti MR, Atefi S: Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma54,484–489 (2007).▪ Along with [27], two recent papers that report a correlation of CXCL8 polymorphisms and breast cancer.
    • 29  Hassan S, Baccarelli A, Salvucci O, Basik M: Plasma stromal cell-derived factor-1: host derived marker predictive of distant metastasis in breast cancer. Clin. Cancer Res.14,446–454 (2008).
    • 30  Coelho A, Calcada C, Catarino R, Pinto D, Fonseca G, Medeiros R: CXCL12 -3´A polymorphism and lung cancer metastases protection: new perspectives in immunotherapy? Cancer Immunol. Immunother.55,639–643 (2006).
    • 31  Dommange F, Cartron G, Espanel C et al.: CXCL12 polymorphism and malignant cell dissemination/tissue infiltration in acute myeloid leukemia. FASEB J.20,1913–1915 (2006).
    • 32  de Oliveira CE, Cavassin GG, Perim Ade L et al.: Stromal cell-derived factor-1 chemokine gene variant in blood donors and chronic myelogenous leukemia patients. J. Clin. Lab. Anal.21,49–54 (2007).
    • 33  Vairaktaris E, Vylliotis A, Spyridonodou S et al.: A DNA polymorphism of stromal-derived factor-1 is associated with advanced stages of oral cancer. AntiCancer Res.28,271–275 (2008).
    • 34  Hirata H, Hinoda Y, Kikuno N et al.: CXCL12 G801A polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin. Cancer Res.13,5056–5062 (2007).
    • 35  de Oliveira Cavassin GG, De Lucca FL, Delgado Andre N et al.: Molecular investigation of the stromal cell-derived factor-1 chemokine in lymphoid leukemia and lymphoma patients from Brazil. Blood Cells Mol. Dis.33,90–93 (2004).
    • 36  Lowe SW, Cepero E, Evan G: Intrinsic tumour suppression. Nature432,307–315 (2004).
    • 37  Soengas MS: Cancer: Ins and outs of tumour control. Nature454,586–587 (2008).▪▪ Outlines and compares three recent papers on tumor senescence pathways and their role in tumor progression.
    • 38  Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA98,12072–12077 (2001).
    • 39  Coppe JP, Kauser K, Campisi J, Beausejour CM: Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem.281,29568–29574 (2006).
    • 40  Xue W, Zender L, Miething C et al.: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature445,656–660 (2007).
    • 41  Acosta JC, O’Loghlen A, Banito A et al.: Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell133,1006–1018 (2008).
    • 42  Kuilman T, Michaloglou C, Vredeveld LC et al.: Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell133,1019–1031 (2008).
    • 43  Maxwell PJ, Gallagher R, Seaton A et al.: HIF-1 and NF-κB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene26,7333–7345 (2007).
    • 44  Wislez M, Fujimoto N, Izzo JG et al.: High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res.66,4198–4207 (2006).
    • 45  Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell132,363–374 (2008).
    • 46  Singh RK, Gutman M, Radinsky R, Bucana CD, Fidler IJ: Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res.54,3242–3247 (1994).
    • 47  Cabioglu N, Yazici MS, Arun B et al.: CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin. Cancer Res.11,5686–5693 (2005).
    • 48  Ding Y, Shimada Y, Maeda M et al.: Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin. Cancer Res.9,3406–3412 (2003).
    • 49  Gunther K, Leier J, Henning G et al.: Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. Int. J. Cancer116,726–733 (2005).
    • 50  Mashino K, Sadanaga N, Yamaguchi H et al.: Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res.62,2937–2941 (2002).
    • 51  Takanami I: Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int. J. Cancer105,186–189 (2003).
    • 52  Muller A, Homey B, Soto H et al.: Involvement of chemokine receptors in breast cancer metastasis. Nature410,50–56 (2001).
    • 53  Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST: Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J. Natl Cancer Inst.93,1638–1643 (2001).
    • 54  Balkwill F: The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol.14,171–179 (2004).▪▪ Highlights the importance of the CXCR4–CXCL12 axis in metastasis.
    • 55  Salvucci O, Bouchard A, Baccarelli A et al.: The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res. Treat.97,275–283 (2006).
    • 56  Li YM, Pan Y, Wei Y et al.: Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell6,459–469 (2004).
    • 57  Kang Y, Siegel PM, Shu W et al.: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3,537–549 (2003).
    • 58  Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P et al.: NF-κB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem.278,21631–21638 (2003).
    • 59  Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG: Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res.7,R402–10 (2005).
    • 60  Mendelsohn J, Baselga J: Epidermal growth factor receptor targeting in cancer. Semin. Oncol.33,369–385 (2006).
    • 61  Allinen M, Beroukhim R, Cai L et al.: Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell6,17–32 (2004).
    • 62  Orimo A, Gupta PB, Sgroi DC et al.: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121,335–348 (2005).
    • 63  Zagzag D, Krishnamachary B, Yee H et al.: Stromal cell-derived factor-1α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res.65,6178–6188 (2005).
    • 64  Polyak K, Hahn WC: Roots and stems: stem cells in cancer. Nat. Med.12,296–300 (2006).
    • 65  Schabath H, Runz S, Joumaa S, Altevogt P: CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J. Cell. Sci.119,314–325 (2006).
    • 66  Koizumi K, Hojo S, Akashi T, Yasumoto K, Saiki I: Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci.98,1652–1658 (2007).
    • 67  Kucia M, Reca R, Miekus K et al.: Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells23,879–894 (2005).
    • 68  Vicari AP, Treilleux I, Lebecque S: Regulation of the trafficking of tumour-infiltrating dendritic cells by chemokines. Semin. Cancer Biol.14,161–169 (2004).
    • 69  Zou W: Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer5,263–274 (2005).▪ How tumor-induced immunosuppression should be considered in the design of therapeutic strategies.
    • 70  Murakami T, Cardones AR, Finkelstein SE et al.: Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J. Exp. Med.198,1337–1347 (2003).
    • 71  Simonetti O, Goteri G, Lucarini G et al.: Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. Eur. J. Cancer42,1181–1187 (2006).
    • 72  Kohrgruber N, Groger M, Meraner P et al.: Plasmacytoid dendritic cell recruitment by immobilized CXCR3 ligands. J. Immunol.173,6592–6602 (2004).
    • 73  Ogilvie P, Paoletti S, Clark-Lewis I, Uguccioni M: Eotaxin-3 is a natural antagonist for CCR2 and exerts a repulsive effect on human monocytes. Blood102,789–794 (2003).
    • 74  Tharp WG, Yadav R, Irimia D et al.: Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. J. Leukoc. Biol.79,539–554 (2006).
    • 75  Vianello F, Papeta N, Chen T et al.: Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J. Immunol.176,2902–2914 (2006).
    • 76  Lee CH, Kakinuma T, Wang J et al.: Sensitization of B16 tumor cells with a CXCR4 antagonist increases the efficacy of immunotherapy for established lung metastases. Mol. Cancer Ther.5,2592–2599 (2006).
    • 77  Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer4,71–78 (2004).
    • 78  Allavena P, Sica A, Solinas G, Porta C, Mantovani A: The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol.66,1–9 (2008).
    • 79  Mantovani A, Schioppa T, Porta C, Allavena P, Sica A: Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev.25,315–322 (2006).
    • 80  Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol.196,254–265 (2002).
    • 81  Ueno T, Toi M, Saji H et al.: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res.6,3282–3289 (2000).
    • 82  Dehqanzada ZA, Storrer CE, Hueman MT et al.: Correlations between serum monocyte chemotactic protein-1 levels, clinical prognostic factors, and HER-2/neu vaccine-related immunity in breast cancer patients. Clin. Cancer Res.12,478–486 (2006).
    • 83  Sica A, Saccani A, Bottazzi B et al.: Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J. Immunol.164,733–738 (2000).
    • 84  Wang HY, Wang RF: Regulatory T cells and cancer. Curr. Opin. Immunol.19,217–223 (2007).
    • 85  Schabowsky RH, Madireddi S, Sharma R, Yolcu ES, Shirwan H: Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. Curr. Opin. Investig. Drugs8,1002–1008 (2007).
    • 86  Stewart TJ, Greeneltch KM, Lutsiak ME, Abrams SI: Immunological responses can have both pro- and antitumour effects: implications for immunotherapy. Expert Rev. Mol. Med.9,1–20 (2007).▪▪ How immune responses can influence tumor progression and mechanisms whereby tumors escape recognition and destruction. Includes a brief review on the pros and cons of some preclinical models.
    • 87  Wang HY, Lee DA, Peng G et al.: Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity20,107–118 (2004).
    • 88  Curiel TJ, Coukos G, Zou L et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10,942–949 (2004).
    • 89  Ishida T, Ishii T, Inagaki A et al.: Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res.66,5716–5722 (2006).
    • 90  Miller AM, Lundberg K, Ozenci V et al.: CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J. Immunol.177,7398–7405 (2006).
    • 91  Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB: Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol. Immunother.57,123–131 (2008).
    • 92  Mizukami Y, Kono K, Kawaguchi Y et al.: CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int. J. Cancer122,2286–2293 (2008).
    • 93  Ishida T, Ueda R: CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci.97,1139–1146 (2006).
    • 94  Baumforth KR, Birgersdotter A, Reynolds GM et al.: Expression of the Epstein–Barr virus-encoded Epstein–Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells. Am. J. Pathol.173,195–204 (2008).
    • 95  Gabrilovich DI, Bronte V, Chen SH et al.: The terminology issue for myeloid-derived suppressor cells. Cancer Res.67(1),425; author reply 426 (2007).
    • 96  Serafini P, Borrello I, Bronte V: Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol.16,53–65 (2006).
    • 97  Bobe P, Benihoud K, Grandjon D, Opolon P, Pritchard LL, Huchet R: Nitric oxide mediation of active immunosuppression associated with graft-versus-host reaction. Blood94,1028–1037 (1999).
    • 98  Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB: CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol.176,2085–2094 (2006).
    • 99  Bronte V, Wang M, Overwijk WW et al.: Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol.161,5313–5320 (1998).
    • 100  Schleifer KW, Mansfield JM: Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J. Immunol.151,5492–5503 (1993).
    • 101  Serafini P, De Santo C, Marigo I et al.: Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother.53,64–72 (2004).
    • 102  Yang L, DeBusk LM, Fukuda K et al.: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell6,409–421 (2004).
    • 103  Talmadge JE: Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin. Cancer Res.13,5243–5248 (2007).▪ Outlines the roles that myeloid-derived suppressor cells can have on suppressing immune responses and highlights their relevance in anticancer therapy design.
    • 104  Stewart TJ, Lutsiak ME, Abrams SI: Immune consequences of protracted host-tumor interactions in a transgenic mouse model of mammary carcinoma. Cancer Invest.26,237–249 (2008).
    • 105  Almand B, Clark JI, Nikitina E et al.: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol.166,678–689 (2001).
    • 106  Schmielau J, Finn OJ: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res.61,4756–4760 (2001).
    • 107  Zea AH, Rodriguez PC, Atkins MB et al.: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res.65,3044–3048 (2005).
    • 108  Filipazzi P, Valenti R, Huber V et al.: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte–macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol.25,2546–2553 (2007).
    • 109  Ochoa AC, Zea AH, Hernandez C, Rodriguez PC: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res.13,721S–726S (2007).
    • 110  Liu Y, Van Ginderachter JA, Brys L, De Baetselier P, Raes G, Geldhof AB: Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J. Immunol.170,5064–5074 (2003).
    • 111  Rodriguez PC, Quiceno DG, Zabaleta J et al.: Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res.64,5839–5849 (2004).
    • 112  Apolloni E, Bronte V, Mazzoni A et al.: Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes. J. Immunol.165,6723–6730 (2000).
    • 113  Lin EY, Gouon-Evans V, nguyen AV, Pollard JW: The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J. Mammary Gland Biol. Neoplasia7,147–162 (2002).
    • 114  Gabrilovich D: Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol.4,941–952 (2004).
    • 115  Melani C, Chiodoni C, Forni G, Colombo MP: Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood102,2138–2145 (2003).
    • 116  Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I: High-dose granulocyte–macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res.64,6337–6343 (2004).
    • 117  Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S: Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res.67,10019–10026 (2007).
    • 118  Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S: Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res.67,4507–4513 (2007).
    • 119  Kuschert GS, Coulin F, Power CA et al.: Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry38,12959–12968 (1999).
    • 120  Hecht I, Hershkoviz R, Shivtiel S et al.: Heparin-disaccharide affects T cells: inhibition of NF-κB activation, cell migration, and modulation of intracellular signaling. J. Leukoc. Biol.75,1139–1146 (2004).
    • 121  Sigrist S, Oberholzer J, Bohbot A et al.: Activation of human macrophages by allogeneic islets preparations: inhibition by AOP-RANTES and heparinoids. Immunology111,416–421 (2004).
    • 122  Hochart H, Jenkins PV, Preston RJ, Smith OP, White B, O’Donnell J: Concentration-dependent roles for heparin in modifying lipopolysaccharide-induced activation of mononuclear cells in whole blood. Thromb. Haemost.99,570–575 (2008).
    • 123  Mellor P, Harvey JR, Murphy KJ et al.: Modulatory effects of heparin and short-length oligosaccharides of heparin on the metastasis and growth of LMD MDA-MB 231 breast cancer cells in vivo. Br. J. Cancer97,761–768 (2007).▪ Recent report demonstrating the effects of heparin on tumor growth and metastasis.
    • 124  Harvey JR, Mellor P, Eldaly H, Lennard TW, Kirby JA, Ali S: Inhibition of CXCR4-mediated breast cancer metastasis: a potential role for heparinoids? Clin. Cancer Res.13,1562–1570 (2007).
    • 125  Kakkar AK, Levine MN, Kadziola Z et al.: Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J. Clin. Oncol.22,1944–1948 (2004).
    • 126  Veldkamp CT, Peterson FC, Pelzek AJ, Volkman BF: The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin. Protein Sci.14,1071–1081 (2005).
    • 127  Sutton A, Friand V, Papy-Garcia D et al.: Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells. Mol. Cancer Ther.6,2948–2958 (2007).
    • 128  Proudfoot AE, Fritchley S, Borlat F et al.: The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J. Biol. Chem.276,10620–10626 (2001).
    • 129  Veillard NR, Braunersreuther V, Arnaud C et al.: Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis188,51–58 (2006).
    • 130  Arya M, Ahmed H, Silhi N, Williamson M, Patel HR: Clinical importance and therapeutic implications of the pivotal CXCL12–CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration. Tumour Biol.28,123–131 (2007).
    • 131  Wang J, Loberg R, Taichman RS: The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev.25,573–587 (2006).
    • 132  Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H: Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res.65,967–971 (2005).
    • 133  Rubin JB, Kung AL, Klein RS et al.: A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA100,13513–13518 (2003).
    • 134  De Falco V, Guarino V, Avilla E et al.: Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res.67,11821–11829 (2007).
    • 135  Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY: CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther.12,84–89 (2005).
    • 136  Liang Z, Wu T, Lou H et al.: Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res.64,4302–4308 (2004).
    • 137  Yoon Y, Liang Z, Zhang X et al.: CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models. Cancer Res.67,7518–7524 (2007).
    • 138  Khan A, Greenman J, Archibald SJ: Small molecule CXCR4 chemokine receptor antagonists: developing drug candidates. Curr. Med. Chem.14,2257–2277 (2007).
    • 139  Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR: A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res.63,8360–8365 (2003).
    • 140  Zhan W, Liang Z, Zhu A et al.: Discovery of small molecule CXCR4 antagonists. J. Med. Chem.50,5655–5664 (2007).
    • 141  Kim SY, Lee CH, Midura BV et al.: Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin. Exp. Metastasis25,201–211 (2008).
    • 142  Ruffini PA, Morandi P, Cabioglu N, Altundag K, Cristofanilli M: Manipulating the chemokine–chemokine receptor network to treat cancer. Cancer109,2392–2404 (2007).
    • 143  Murphy A, Westwood JA, Teng MW, Moeller M, Darcy PK, Kershaw MH: Gene modification strategies to induce tumor immunity. Immunity22,403–414 (2005).
    • 144  Fushimi T, Kojima A, Moore MA, Crystal RG: Macrophage inflammatory protein 3a transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J. Clin. Invest.105,1383–1393 (2000).
    • 145  Fushimi T, O’Connor TP, Crystal RG: Adenoviral gene transfer of stromal cell-derived factor-1 to murine tumors induces the accumulation of dendritic cells and suppresses tumor growth. Cancer Res.66,3513–3522 (2006).
    • 146  Furumoto K, Soares L, Engleman EG, Merad M: Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J. Clin. Invest.113,774–783 (2004).
    • 147  Hillinger S, Yang SC, Zhu L et al.: EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-γ-dependent antitumor responses in a lung cancer model. J. Immunol.171,6457–6465 (2003).
    • 148  Westermann J, nguyen-Hoai T, Baldenhofer G et al.: CCL19 (ELC) as an adjuvant for DNA vaccination: induction of a Th1-type T-cell response and enhancement of antitumor immunity. Cancer Gene Ther.14,523–532 (2007).
    • 149  Howard OM, Dong HF, Shirakawa AK, Oppenheim JJ: LEC induces chemotaxis and adhesion by interacting with CCR1 and CCR8. Blood96,840–845 (2000).
    • 150  Giovarelli M, Cappello P, Forni G et al.: Tumor rejection and immune memory elicited by locally released LEC chemokine are associated with an impressive recruitment of APCs, lymphocytes, and granulocytes. J. Immunol.164,3200–3206. (2000).
    • 151  Guiducci C, Di Carlo E, Parenza M et al.: Intralesional injection of adenovirus encoding CC chemokine ligand 16 inhibits mammary tumor growth and prevents metastatic-induced death after surgical removal of the treated primary tumor. J. Immunol.172,4026–4036 (2004).
    • 152  Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C: Antitumor effects of the mouse chemokine 6chemokine/SLC through angiostatic and immunological mechanisms. J. Immunol.165,1992–2000 (2000).
    • 153  Sharma S, Stolina M, Luo J et al.: Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J. Immunol.164,4558–4563 (2000).
    • 154  Sharma S, Stolina M, Zhu L et al.: Secondary lymphoid organ chemokine reduces pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res.61,6406–6412 (2001).
    • 155  Yang SC, Batra RK, Hillinger S et al.: Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res.66,3205–3213 (2006).
    • 156  Yang SC, Hillinger S, Riedl K et al.: Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin. Cancer Res.10,2891–2901 (2004).
    • 157  Liu Y, Huang H, Saxena A, Xiang J: Intratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10, respectively, synergizes to facilitate regression of established tumors. Cancer Gene Ther.9,533–542 (2002).
    • 158  Narvaiza I, Mazzolini G, Barajas M et al.: Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-γ-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J. Immunol.164,3112–3122 (2000).
    • 159  Palmer K, Hitt M, Emtage PC, Gyorffy S, Gauldie J: Combined CXC chemokine and interleukin-12 gene transfer enhances antitumor immunity. Gene Ther.8,282–290 (2001).
    • 160  Loetscher M, Gerber B, Loetscher P et al.: Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J. Exp. Med.184,963–969 (1996).
    • 161  Taub DD, Lloyd AR, Conlon K et al.: Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J. Exp. Med.177,1809–1814 (1993).
    • 162  Angiolillo AL, Sgadari C, Taub DD et al.: Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J. Exp. Med.182,155–162 (1995).
    • 163  Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP: Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res.65,3437–3446 (2005).
    • 164  Huang H, Xiang J: Synergistic effect of lymphotactin and interferon γ-inducible protein-10 transgene expression in T-cell localization and adoptive T-cell therapy of tumors. Int. J. Cancer109,817–825 (2004).
    • 165  Emtage PC, Wan Y, Hitt M et al.: Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models. Hum. Gene Ther.10,697–709 (1999).
    • 166  Del Vecchio M, Bajetta E, Canova S et al.: Interleukin-12: biological properties and clinical application. Clin. Cancer Res.13,4677–4685 (2007).
    • 167  Rousseau RF, Haight AE, Hirschmann-Jax C et al.: Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood101,1718–1726 (2003).
    • 168  Russell HV, Strother D, Mei Z et al.: Phase I trial of vaccination with autologous neuroblastoma tumor cells genetically modified to secrete IL-2 and lymphotactin. J. Immunother.30,227–233 (2007).
    • 169  Kershaw MH, Wang G, Westwood JA et al.: Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther.13,1971–1980 (2002).