We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Virus-encoded chemokines, chemokine receptors and chemokine-binding proteins: new paradigms for future therapy

    Lorenzo Dagna

    Vita-Salute San Raffaele University, Milan, Italy, and, San Raffaele Scientific Institute, Unit of Human Virology, Department of Biological & Technological Research (DIBIT), 20132 Milan, Italy.

    &
    Paolo Lusso

    † Author for correspondence

    San Raffaele Scientific Institute, Unit of Human Virology, Department of Biological & Technological Research (DIBIT), 20132 Milan, Italy.

    Published Online:https://doi.org/10.2217/17460794.2.4.353

    Over millions of years of coevolution with their hosts, viruses have learned the finest artifices of the immune system defense mechanisms and developed a variety of strategies for evading them. The chemokine system has been a primary target of these viral efforts because of the critical role it plays in the development of effective immune responses. Not only do chemokines control cellular recruitment at the site of infection, they also regulate the magnitude and character of the immune responses. Several viruses, and large DNA viruses in particular, have exploited the chemokine system by hijacking and reprogramming chemokine or chemokine-receptor genes, and/or secreting chemokine-binding proteins. In the past few years there has been intense investigation in this area, driven not only by the prospect of gaining a better understanding of viral-immune evasion mechanisms, but also by the possibility of targeting these molecules as part of future antiviral therapeutic approaches, as well as exploiting viral strategies of chemokine interference as novel therapies for inflammatory or neoplastic diseases.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Alcami A, Koszinowski UH: Viral mechanisms of immune evasion. Immunol. Today21(9),447–455 (2000).
    • Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL: Viral subversion of the immune system. Annu. Rev. Immunol.18,861–926 (2000).
    • Allen SJ, Crown SE, Handel TM: Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol.25,787–820 (2007).
    • Cinamon G, Shinder V, Alon R: Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol.2(6),515–522 (2001).
    • Rossi D, Zlotnik A: The biology of chemokines and their receptors. Annu. Rev. Immunol.18,217–242 (2000).
    • Viola A, Contento RL, Molon B: T cells and their partners: the chemokine dating agency. Trends Immunol.27(9),421–427 (2006).
    • Lusso P: Chemokines and viruses: the dearest enemies. Virology273(2),228–240 (2000).
    • Alcami A: Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol.3(1),36–50 (2003).
    • Lindow M, Nansen A, Bartholdy C et al.: The virus-encoded chemokine vMIP-II inhibits virus-induced Tc1-driven inflammation. J. Virol.77(13),7393–7400 (2003).
    • 10  Singh UP, Singh S, Ravichandran P, Taub DD, Lillard JW Jr: Viral macrophage-inflammatory protein-II: a viral chemokine that differentially affects adaptive mucosal immunity compared with its mammalian counterparts. J. Immunol.173(9),5509–5516 (2004).
    • 11  Luttichau HR, Lewis IC, Gerstoft J, Schwartz TW: The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor. Eur. J. Immunol.31(4),1217–1220 (2001).
    • 12  Tripp RA, Jones LP, Haynes LM et al.: CX3C chemokine mimicry by respiratory syncytial virus G   glycoprotein. Nat. Immunol.2(8),732–738 (2001).
    • 13  Harcourt J, Alvarez R, Jones LP et al.: Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell responses. J. Immunol.176(3),1600–1608 (2006).
    • 14  Dewin DR, Catusse J, Gompels UA: Identification and characterization of U83A viral chemokine, a broad and potent β-chemokine agonist for human CCRs with unique selectivity and inhibition by spliced isoform. J. Immunol.176(1),544–556 (2006).•• Illustrates the opposite effects (angonist and antagonist) of the viral chemokine (vCK) U83A encoded by human herpesvirus (HHV)-6A, according to different splicing forms.
    • 15  Catusse J, Parry CM, Dewin DR, Gompels UA: Inhibition of HIV-1 infection by viral chemokine U83A via high affinity CCR5 interactions which block human chemokine-induced leukocyte chemotaxis and receptor internalisation. Blood (2007) (Epub ahead of print).
    • 16  Luttichau HR, Clark-Lewis I, Jensen PO et al.: A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. J. Biol. Chem.278(13),10928–10933 (2003).
    • 17  Noda S, Aguirre SA, Bitmansour A et al.: Cytomegalovirus MCK-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. Blood107(1),30–38 (2006).
    • 18  Saederup N, Aguirre SA, Sparer TE, Bouley DM, Mocarski ES: Murine cytomegalovirus CC chemokine homologue MCK-2 (m131–129) is a determinant of dissemination that increases inflammation at initial sites of infection. J. Virol.75(20),9966–9976 (2001).
    • 19  Cui X, Lee LF, Reed WM, Kung HJ, Reddy SM: Marek's disease virus-encoded vIL-8 gene is involved in early cytolytic infection but dispensable for establishment of latency. J. Virol.78(9),4753–4760 (2004).
    • 20  Louahed J, Struyf S, Demoulin JB et al.: CCR8-dependent activation of the RAS/MAPK pathway mediates anti-apoptotic activity of I-309/ CCL1 and vMIP-I. Eur. J. Immunol.33(2),494–501 (2003).
    • 21  Seet BT, McFadden G: Viral chemokine-binding proteins. J. Leukoc. Biol.72(1),24–34 (2002).
    • 22  Carfi A, Smith CA, Smolak PJ, McGrew J, Wiley DC: Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc. Natl Acad. Sci. USA96(22),12379–12383 (1999).
    • 23  Burns JM, Dairaghi DJ, Deitz M, Tsang M, Schall TJ: Comprehensive mapping of poxvirus vCCI chemokine-binding protein. Expanded range of ligand interactions and unusual dissociation kinetics. J. Biol. Chem.277(4),2785–2789 (2002).
    • 24  Alexander JM, Nelson CA, van Berkel V et al.: Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell111(3),343–356 (2002).•• First description of the molecular interactions of a vCK-binding protein (vCKBP) with a chemokine.
    • 25  Wang D, Bresnahan W, Shenk T: Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc. Natl Acad. Sci. USA101(47),16642–16647 (2004).
    • 26  Lalani AS, Graham K, Mossman K et al.: The purified myxoma virus γ interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J. Virol.71(6),4356–4363 (1997).
    • 27  Alcami A, Symons JA, Collins PD, Williams TJ, Smith GL: Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J. Immunol.160(2),624–633 (1998).
    • 28  Smith CA, Smith TD, Smolak PJ et al.: Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits beta chemokine activity yet lacks sequence homology to known chemokine receptors. Virology236(2),316–327 (1997).
    • 29  Seet BT, Singh R, Paavola C et al.: Molecular determinants for CC-chemokine recognition by a Poxvirus CC-chemokine inhibitor. Proc. Natl Acad. Sci. USA98(16),9008–9013 (2001).
    • 30  Beck CG, Studer C, Zuber JF et al.: The viral CC chemokine-binding protein vCCI inhibits monocyte chemoattractant protein-1 activity by masking its CCR2B-binding site. J. Biol. Chem.276(46),43270–43276 (2001).
    • 31  Seet BT, Barrett J, Robichaud J et al.: Glycosaminoglycan binding properties of the myxoma virus CC-chemokine inhibitor, M-T1. J. Biol. Chem.276(32),30504–30513 (2001).
    • 32  Zhang L, Derider M, McCornack MA et al.: Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β. Proc. Natl Acad. Sci. USA103(38),13985–13990 (2006).•• Describes the key interactions that are the basis for the affinity and selectivity of vCKBP2 toward certain CC chemokines.
    • 33  Parry CM, Simas JP, Smith VP et al.: A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J. Exp. Med.191(3),573–578 (2000).
    • 34  van Berkel V, Barrett J, Tiffany HL et al.: Identification of a γ-herpesvirus selective chemokine binding protein that inhibits chemokine action. J. Virol.74(15),6741–6747 (2000).
    • 35  Alcami A: Structural basis of the herpesvirus M3-chemokine interaction. Trends Microbiol.11(5),191–192 (2003).
    • 36  Bridgeman A, Stevenson PG, Simas JP, Efstathiou S: A secreted chemokine-binding protein encoded by murine γ-herpesvirus-68 is necessary for the establishment of a normal latent load. J. Exp. Med.194(3),301–312 (2001).
    • 37  Webb LM, Clark-Lewis I, Alcami A: The γ-herpesvirus chemokine binding protein binds to the N terminus of CXCL8. J. Virol.77(15),8588–8592 (2003).
    • 38  Jensen KK, Chen SC, Hipkin RW et al.: Disruption of CCL21-induced chemotaxis in vitro and in vivo by M3, a chemokine-binding protein encoded by murine γherpesvirus 68. J. Virol.77(1),624–630 (2003).
    • 39  van Berkel V, Levine B, Kapadia SB et al.: Critical role for a high-affinity chemokine-binding protein in γ-herpesvirus-induced lethal meningitis. J. Clin. Invest.109(7),905–914 (2002).
    • 40  Bryant NA, Davis-Poynter N, Vanderplasschen A, Alcami A: Glycoprotein-G isoforms from some α-herpesviruses function as broad-spectrum chemokine binding proteins. EMBO J.22(4),833–846 (2003).
    • 41  Costes B, Ruiz-Arguello MB, Bryant NA, Alcami A, Vanderplasschen A: Both soluble and membrane-anchored forms of Felid herpesvirus 1 glycoprotein G function as a broad-spectrum chemokine-binding protein. J. Gen. Virol.86(Pt 12),3209–3214 (2005).
    • 42  Costes B, Thirion M, Dewals B et al.: Felid herpesvirus 1 glycoprotein-G is a structural protein that mediates the binding of chemokines on the viral envelope. Microbes Infect.8(11),2657–2667 (2006).
    • 43  Seet BT, McCaughan CA, Handel TM et al.: Analysis of an orf virus chemokine-binding protein: shifting ligand specificities among a family of Poxvirus viroceptors. Proc. Natl Acad. Sci. USA100(25),15137–15142 (2003).
    • 44  Seet BT, Johnston JB, Brunetti CR et al.: Poxviruses and immune evasion. Annu. Rev. Immunol.21,377–423 (2003).
    • 45  Alejo A, Ruiz-Arguello MB, Ho Y et al.: A chemokine-binding domain in the tumor necrosis factor receptor from Variola (smallpox) virus. Proc. Natl Acad. Sci. USA103(15),5995–6000 (2006).•• Demonstrates the chemokine-binding capacity of a Poxvirus-encoded TNF-receptor by a previously undescribed chemokine-binding and inhibitory domain.
    • 46  Kunkel EJ, Butcher EC: Chemokines and the tissue-specific migration of lymphocytes. Immunity16(1),1–4 (2002).
    • 47  Schaerli P, Willimann K, Ebert LM, Walz A, Moser B: Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity23(3),331–342 (2005).
    • 48  Rosenkilde MM, Kledal TN, Brauner-Osborne H, Schwartz TW: Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J. Biol. Chem.274(2),956–961 (1999).
    • 49  Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E: Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature385(6614),347–350 (1997).
    • 50  Chiou CJ, Poole LJ, Kim PS et al.: Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J. Virol.76(7),3421–3439 (2002).
    • 51  Cannon M, Philpott NJ, Cesarman E: The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J. Virol.77(1),57–67 (2003).
    • 52  Montaner S, Sodhi A, Molinolo A et al.: Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell3(1),23–36 (2003).
    • 53  Bais C, Van Geelen A, Eroles P et al.: Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell3(2),131–143 (2003).
    • 54  Verzijl D, Pardo L, van Dijk M et al.: Helix 8 of the viral chemokine receptor ORF74 directs chemokine binding. J. Biol. Chem.281(46),35327–35335 (2006).
    • 55  Holst PJ, Rosenkilde MM, Manfra D et al.: Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J. Clin. Invest.108(12),1789–1796 (2001).
    • 56  Polson AG, Wang D, DeRisi J, Ganem D: Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus. Cancer Res.62(15),4525–4530 (2002).•• Illustrates the effects of the constitutive activity of the HHV-8-encoded G-protein coupled receptor on different cell types.
    • 57  Jensen KK, Manfra DJ, Grisotto MG et al.: The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma. J. Immunol.174(6),3686–3694 (2005).
    • 58  Grisotto MG, Garin A, Martin AP et al.: The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J. Clin. Invest.116(5),1264–1273 (2006).
    • 59  Malnati MS, Dagna L, Ponzoni M, Lusso P: Human herpesvirus 8 (HHV-8/KSHV) and hematologic malignancies. Rev. Clin. Exp. Hematol.7(4),375–405 (2003).
    • 60  Pati S, Cavrois M, Guo HG et al.: Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi's sarcoma pathogenesis. J. Virol.75(18),8660–8673 (2001).
    • 61  Schwarz M, Murphy PM: Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κB and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J. Immunol.167(1),505–513 (2001).
    • 62  Liu C, Okruzhnov Y, Li H, Nicholas J: Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J. Virol.75(22),10933–10940 (2001).
    • 63  Estep RD, Axthelm MK, Wong SW: A G protein-coupled receptor encoded by rhesus rhadinovirus is similar to ORF74 of Kaposi's sarcoma-associated herpesvirus. J. Virol.77(3),1738–1746 (2003).
    • 64  Casarosa P, Bakker RA, Verzijl D et al.: Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J. Biol. Chem.276(2),1133–1137 (2001).
    • 65  McLean KA, Holst PJ, Martini L, Schwartz TW, Rosenkilde MM: Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology325(2),241–251 (2004).
    • 66  Boomker JM, The TH, de Leij LF, Harmsen MC: The human cytomegalovirus-encoded receptor US28 increases the activity of the major immediate-early promoter/enhancer. Virus Res.118(1–2),196–200 (2006).
    • 67  Maussang D, Verzijl D, van Walsum M et al.: Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc. Natl Acad. Sci. USA103(35),13068–13073 (2006).•• Demonstrates that the constitutively activated vCK receptor US28 may act as a viral oncogene and enhance and/or promote human cytomegalovirus-associated tumor progression.
    • 68  Fitzsimons CP, Gompels UA, Verzijl D et al.: Chemokine-directed trafficking of receptor stimulus to different G proteins: selective inducible and constitutive signaling by human herpesvirus 6-encoded chemokine receptor U51. Mol. Pharmacol.69(3),888–898 (2006).
    • 69  Waldhoer M, Kledal TN, Farrell H, Schwartz TW: Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J. Virol.76(16),8161–8168 (2002).
    • 70  Gruijthuijsen YK, Casarosa P, Kaptein SJ et al.: The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J. Virol.76(3),1328–1338 (2002).
    • 71  Tadagaki K, Nakano K, Yamanishi K: Human herpesvirus 7 open reading frames U12 and U51 encode functional β-chemokine receptors. J. Virol.79(11),7068–7076 (2005).
    • 72  Nakano K, Tadagaki K, Isegawa Y et al.: Human herpesvirus 7 open reading frame U12 encodes a functional β-chemokine receptor. J. Virol.77(14),8108–8115 (2003).
    • 73  Lupu-Meiri M, Silver RB, Simons AH, Gershengorn MC, Oron Y: Constitutive signaling by Kaposi’s sarcoma-associated herpesvirus G-protein-coupled receptor desensitizes calcium mobilization by other receptors. J. Biol. Chem.276(10),7122–7128 (2001).
    • 74  Randolph-Habecker JR, Rahill B, Torok-Storb B et al.: The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine19(1),37–46 (2002).
    • 75  Bodaghi B, Jones TR, Zipeto D et al.: Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J. Exp. Med.188(5),855–866 (1998).
    • 76  Boomker JM, van Luyn MJ, The TH, de Leij LF, Harmsen MC: US28 actions in HCMV infection: lessons from a versatile hijacker. Rev. Med. Virol.15(4),269–282 (2005).
    • 77  Milne RS, Mattick C, Nicholson L et al.: RANTES binding and down-regulation by a novel human herpesvirus-6 β-chemokine receptor. J. Immunol.164(5),2396–2404 (2000).
    • 78  Streblow DN, Soderberg-Naucler C, Vieira J et al.: The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell99(5),511–520 (1999).
    • 79  Streblow DN, Vomaske J, Smith P et al.: Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J. Biol. Chem.278(50),50456–50465 (2003).
    • 80  Melnychuk RM, Smith P, Kreklywich CN et al.: Mouse cytomegalovirus M33 is necessary and sufficient in virus-induced vascular smooth muscle cell migration. J. Virol.79(16),10788–10795 (2005).
    • 81  Kledal TN, Rosenkilde MM, Schwartz TW: Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett.441(2),209–214 (1998).
    • 82  Vischer HF, Leurs R, Smit MJ: HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol. Sci.27(1),56–63 (2006).
    • 83  Haskell CA, Cleary MD, Charo IF: Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion. J. Biol. Chem.275(44),34183–34189 (2000).
    • 84  Zhen Z, Bradel-Tretheway B, Sumagin S, Bidlack JM, Dewhurst S: The human herpesvirus 6 G protein-coupled receptor homolog U51 positively regulates virus replication and enhances cell–cell fusion in vitro. J. Virol.79(18),11914–11924 (2005).
    • 85  Fraile-Ramos A, Pelchen-Matthews A, Kledal TN et al.: Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic3(3),218–232 (2002).
    • 86  Fraile-Ramos A, Kledal TN, Pelchen-Matthews A et al.: The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol. Biol. Cell12(6),1737–1749 (2001).
    • 87  Pleskoff O, Casarosa P, Verneuil L et al.: The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS J.272(16),4163–4177 (2005).
    • 88  Lucas A, McFadden G: Secreted immunomodulatory viral proteins as novel biotherapeutics. J. Immunol.173(8),4765–4774 (2004).
    • 89  Fallon PG, Alcami A: Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol.27(10),470–476 (2006).
    • 90  DeBruyne LA, Li K, Bishop DK, Bromberg JS: Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity. Gene Ther.7(7),575–582 (2000).
    • 91  Takami S, Minami M, Nagata I, Namura S, Satoh M: Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab.21(12),1430–1435 (2001).
    • 92  Ghirnikar RS, Lee YL, Eng LF: Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J. Neurosci. Res.59(1),63–73 (2000).
    • 93  Chen S, Bacon KB, Li L et al.: In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulo nephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J. Exp. Med.188(1),193–198 (1998).
    • 94  Liu L, Lalani A, Dai E et al.: The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury. J. Clin. Invest.105(11),1613–1621 (2000).
    • 95  Bedard EL, Kim P, Jiang J et al.: Chemokine-binding viral protein M-T7 prevents chronic rejection in rat renal allografts. Transplantation76(1),249–252 (2003).
    • 96  Liu L, Dai E, Miller L et al.: Viral chemokine-binding proteins inhibit inflammatory responses and aortic allograft transplant vasculopathy in rat models. Transplantation77(11),1652–1660 (2004).
    • 97  Dabbagh K, Xiao Y, Smith C et al.: Local blockade of allergic airway hyperreactivity and inflammation by the Poxvirus-derived pan-CC-chemokine inhibitor vCCI. J. Immunol.165(6),3418–3422 (2000).•• Suggests the potential topical use of poxviral vCKBP viral CC-chemokine inhibitor for controlling allergic airway inflammation.
    • 98  Jamieson T, Cook DN, Nibbs RJ et al.: The chemokine receptor D6 limits the inflammatory response in vivo. Nat. Immunol.6(4),403–411 (2005).
    • 99  Pyo R, Jensen KK, Wiekowski MT et al.: Inhibition of intimal hyperplasia in transgenic mice conditionally expressing the chemokine-binding protein M3. Am. J. Pathol.164(6),2289–2297 (2004).