We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/17460794.2.2.205

The highly pathogenic filoviruses, Marburg and Ebola virus, belong to the nonsegmented negative-sense RNA viruses of the order Mononegavirales. The mode of replication and transcription is similar for these viruses. On one hand, the negative-sense RNA genome serves as a template for replication, to generate progeny genomes, and, on the other hand, for transcription, to produce mRNAs. Despite the similarities in the replication/transcription strategy, filoviruses have evolved structural and functional properties that are unique among the nonsegmented negative-sense RNA viruses. Moreover, there are also striking differences in the replication and transcription mechanisms of Marburg and Ebola virus. This includes nucleocapsid formation, the structure of the genomic replication promoter, the protein requirement for transcription and the use of mRNA editing. In this article, the current knowledge of the replication and transcription strategy of Marburg and Ebola virus is reviewed, with focus on the observed differences.

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

Bibliography

  • Hensley LE, Jones SM, Feldmann H, Jahrling PB, Geisbert TW: Ebola and Marburg viruses: pathogenesis and development of countermeasures. Curr. Mol. Med.5,761–772 (2005).
  • Feldmann H, Geisbert TW, Jahrling PB et al.: In: Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (Eds). 645–653, Elsevier/Academic Press, San Diego, USA (2005).
  • Wang L, Harcourt BH, Yu M et al.: Molecular biology of Hendra and Nipah viruses. Microbes Infect.3,279–287 (2001).
  • Towner JS, Khristova ML, Sealy TK et al.: Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol.80,6497–6516 (2006).
  • Sanchez A, Rollin PE: Complete genome sequence of an Ebola virus (Sudan species) responsible for a 2000 outbreak of human disease in Uganda. Virus Res.113,16–25 (2005).
  • Groseth A, Ströher U, Theriault S, Feldmann H: Molecular characterization of an isolate from the 1989/90 epizootic of Ebola virus Reston among macaques imported into the United States. Virus Res.87,155–163 (2002).
  • Ikegami T, Calaor AB, Miranda ME et al.: Genome structure of Ebola virus subtype Reston: differences among Ebola subtypes. Brief report. Arch. Virol.146,2021–2027. (2001).
  • Biacchesi S, Skiadopoulos MH, Boivin G et al.: Genetic diversity between human metapneumovirus subgroups. Virology315,1–9 (2003).
  • Kuhn JH, Radoshitzky SR, Guth AC et al.: Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J. Biol. Chem.281,15951–15958 (2006).
  • 10  Jasenosky LD, Kawaoka Y: Filovirus budding. Virus Res.106,181–188 (2004).
  • 11  Feldmann H, Volchkov VE, Volchkova VA, Ströher U, Klenk HD: Biosynthesis and role of filoviral glycoproteins. J. Gen. Virol.82,2839–2848. (2001).
  • 12  Hartlieb B, Weissenhorn W: Filovirus assembly and budding. Virology344,64–70 (2006).
  • 13  Bamberg S, Kolesnikova L, Möller P, Klenk HD, Becker S: VP24 of Marburg virus influences formation of infectious particles. J. Virol.79,13421–13433 (2005).
  • 14  Han Z, Boshra H, Sunyer JO, Zwiers SH, Paragas J, Harty RN: Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding. J. Virol.77,1793–1800 (2003).
  • 15  Licata JM, Johnson RF, Han Z, Harty RN: Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J. Virol.78,7344–7351 (2004).
  • 16  Hoenen T, Groseth A, Kolesnikova L et al.: Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24. J. Virol.80,7260–7264 (2006).• Describes the establishment of an infectious virus-like particle system for Ebola virus (EBOV) in naive cells.
  • 17  Noda T, Aoyama K, Sagara H, Kida H, Kawaoka Y: Nucleocapsid-like structures of Ebola virus reconstructed using electron tomography. J. Vet. Med. Sci.67,325–328 (2005).
  • 18  Volchkov VE, Chepurnov AA, Volchkova VA, Ternovoj VA, Klenk HD: Molecular characterization of guinea pig-adapted variants of Ebola virus. Virology277,147–155 (2000).
  • 19  Reid SP, Leung LW, Hartman AL et al.: Ebola virus VP24 binds karyopherin α1 and blocks STAT1 nuclear accumulation. J. Virol.80,5156–5167 (2006).• First report that a filovirus protein interferes with interferon signaling.
  • 20  Ebihara H, Takada A, Kobasa D et al.: Molecular determinants of Ebola virus virulence in mice. PLoS Pathog.2,e73 (2006).•• Identifies virus proteins involved in host tropism determination by using recombinant EBOV.
  • 21  Mühlberger E, Becker S: Marburg virus replication and nucleocapsid formation: different jobs, same players. In: Structure-Function Relationships of Human Pathogenic Viruses. Bogner E, Holzenburg A (Eds.) 89–97, Kluwer Academic/Plenum Publishers, London, UK (2002).
  • 22  Kolesnikova L, Mühlberger E, Ryabchikova E, Becker S: Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions. J. Virol.74,3899–3904 (2000).
  • 23  Noda T, Ebihara H, Muramoto Y et al.: Assembly and budding of Ebolavirus. PLoS Pathog.2,e99 (2006).• Proposes a nice model for EBOV virion formation.
  • 24  Mühlberger E, Lötfering B, Klenk HD, Becker S: Three of the four nucleocapsid proteins of Marburg virus, NP, VP35 and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J. Virol.72,8756–8764 (1998).• First description of a Marburg virus (MARV) minigenome system.
  • 25  Mühlberger E, Weik M, Volchkov VE, Klenk HD, Becker S: Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J. Virol.73,2333–2342 (1999).• First description of an EBOV minigenome system.
  • 26  Cardenas WB, Loo YM, Gale M Jr et al.: Ebola virus VP35 protein binds double-stranded RNA and inhibits α/β interferon production induced by RIG-I signaling. J. Virol.80,5168–5178 (2006).• Determines cellular target for EBOV interferon antagonist VP35.
  • 27  Hartman AL, Dover JE, Towner JS, Nichol ST: Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J. Virol.80,6430–6440 (2006).
  • 28  Feng Z, Cerveny M, Yan Z, He B: The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA dependent protein kinase PKR. J. Virol.81,182-193 (2006).• Shows that EBOV VP35 blocks antiviral proteins.
  • 29  Volchkov VE, Volchkova VA, Mühlberger E et al.: Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science291,1965–1969. (2001).•• First description of an EBOV rescue system.
  • 30  Kindzelskii AL, Yang Z, Nabel GJ, Todd RF 3rd, Petty HR: Ebola virus secretory glycoprotein (sGP) diminishes Fc γ RIIIB-to-CR3 proximity on neutrophils. J. Immunol164,953–958 (2000).
  • 31  Sui J, Marasco WA: Evidence against Ebola virus sGP binding to human neutrophils by a specific receptor. Virology303,9–14 (2002).
  • 32  Wahl-Jensen V, Kurz SK, Hazelton PR et al.: Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J. Virol.79,2413–2419 (2005).
  • 33  Whelan SP, Barr JN, Wertz GW: Transcription and replication of nonsegmented negative-strand RNA viruses. Curr. Top. Microbiol. Immunol.283,61–119 (2004).
  • 34  Mavrakis M, Kolesnikova L, Schoehn G, Becker S, Ruigrok RW: Morphology of Marburg virus NP-RNA. Virology296,300–307 (2002).
  • 35  Huang Y, Xu L, Sun Y, Nabel GJ: The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and post-translational modification of nucleoprotein. Mol. Cell.10,307–316 (2002).
  • 36  Watanabe S, Noda T, Kawaoka Y: Functional mapping of the nucleoprotein of Ebola virus. J. Virol.80,3743–3751 (2006).
  • 37  Noda T, Watanabe S, Sagara H, Kawaoka Y: Mapping of theVP40-binding regions of the Nucleoprotein of Ebola virus. J. Virol. (2007) (Epub ahead of print).
  • 38  Johnson RF, McCarthy SE, Godlewski PJ, Harty RN: Ebola virus VP35-VP40 interaction is sufficient for packaging 3E-5E minigenome RNA into virus-like particles. J. Virol.80,5135–5144 (2006).
  • 39  Boehmann Y, Enterlein S, Randolf A, Mühlberger E: A reconstituted replication and transcription system for Ebola virus Reston and comparison with Ebola virus Zaire. Virology332,406–417 (2005).
  • 40  Groseth A, Feldmann H, Theriault S, Mehmetoglu G, Flick R: RNA polymerase I-driven minigenome system for Ebola viruses. J. Virol.79,4425–4433 (2005).• Description of an RNA polymerase I-, II-driven EBOV minigenome system.
  • 41  Conzelmann KK: Reverse genetics of mononegavirales. Curr. Top. Microbiol. Immunol.283,1–41 (2004).
  • 42  Becker S, Rinne C, Hofsäss U, Klenk HD, Mühlberger E: Interactions of Marburg virus nucleocapsid proteins. Virology249,406–417 (1998).
  • 43  Möller P, Pariente N, Klenk HD, Becker S: Homo-oligomerization of Marburgvirus VP35 is essential for its function in replication and transcription. J. Virol.79,14876–14886 (2005).
  • 44  Reid SP, Cardenas WB, Basler CF: Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Virology341,179–189 (2005).
  • 45  Poch O, Blumberg BM, Bougueleret L, Tordo N: Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J. Gen. Virol.71,1153–1162. (1990).
  • 46  Calain P, Monroe MC, Nichol ST: Ebola virus defective interfering particles and persistent infection. Virology262,114–128. (1999).
  • 47  Crary SM, Towner JS, Honig JE, Shoemaker TR, Nichol ST: Analysis of the role of predicted RNA secondary structures in Ebola virus replication. Virology306,210–218. (2003).
  • 48  Weik M, Enterlein S, Schlenz K, Mühlberger E: The Ebola virus genomic replication promoter is bipartite and follows the rule of six. J. Virol.79,10660–10671 (2005).• Describes the unique structure of the EBOV promoter.
  • 49  Cowton VM, McGivern DR, Fearns R: Unravelling the complexities of respiratory syncytial virus RNA synthesis. J. Gen. Virol.87,1805–1821 (2006).
  • 50  Kolakofsky D, Roux L, Garcin D, Ruigrok RW: Paramyxovirus mRNA editing, the ‘rule of six’ and error catastrophe: a hypothesis. J. Gen. Virol.86,1869–1877 (2005).
  • 51  Weik M, Modrof J, Klenk HD, Becker S, Mühlberger E: Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J. Virol.76,8532–8539. (2002).• Describes the exceptional EBOV transcription strategy.
  • 52  Mühlberger E, Trommer S, Funke C, Volchkov V, Klenk HD, Becker S: Termini of all mRNA species of Marburg virus: sequence and secondary structure. Virology223,376–380 (1996).
  • 53  Mühlberger E: Genome organization, replication, and transcription of filoviruses. In: Ebola and Marburg viruses: Molecular and Cellular Biology. Feldmann HaK, HD (Eds). 1–12, Horizon Scientific Press, Wymondham, Norfolk, UK (2004).
  • 54  Sanchez A, Kiley MP, Holloway BP, Auperin DD: Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res.29,215–240 (1993).
  • 55  Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y: Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J. Virol.76,406–410 (2002).• Description of an EBOV rescue system based on RNA polymerase II helper plasmids expressing the nucleocapsid proteins.
  • 56  Theriault S, Groseth A, Neumann G, Kawaoka Y, Feldmann H: Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Res.106,43–50 (2004).
  • 57  Modrof J, Mühlberger E, Klenk HD, Becker S: Phosphorylation of VP30 impairs ebola virus transcription. J. Biol. Chem.277,33099–33104. (2002).
  • 58  Modrof J, Becker S, Mühlberger E: Ebola virus transcription activator VP30 is a zinc-binding protein. J. Virol.77,3334–3338 (2003).
  • 59  Hartlieb B, Modrof J, Mühlberger E, Klenk HD, Becker S: Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J. Biol. Chem.278,41830–41836 (2003).
  • 60  Hartlieb B, Muziol T, Weissenhorn W, Becker S: Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. Proc. Natl Acad. Sci. USA104,624–629 (2007).• First data on the crystal structure of EBOV VP30.
  • 61  Hardy RW, Wertz GW: The Cys(3)-His(1) motif of the respiratory syncytialvirus M2–1 protein is essential for protein function. J. Virol.74,5880–5885 (2000).
  • 62  Enterlein S, Volchkov V, Weik M et al.: Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J. Virol.80,1038–1043 (2006).• First description of a MARV rescue system.
  • 63  Fowler T, Bamberg S, Möller P et al.: Inhibition of Marburg virus protein expression and viral release by RNA interference. J. Gen. Virol.86,1181–1188 (2005).
  • 64  Volchkov VE, Becker S, Volchkova VA et al.: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology214,421–430 (1995).• First reports about EBOV glycoprotein (GP) mRNA editing.
  • 65  Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST: The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc. Natl Acad. Sci. U S A93,3602–3607 (1996).• First reports about EBOV GP mRNA editing.
  • 66  Alazard-Dany N, Volchkova V, Reynard O et al.: Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J. Gen. Virol.87,1247–1257 (2006).
  • 67  Geisbert TW, Hensley LE, Kagan E et al.: Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J. Infect. Dis.193,1650–1657 (2006).• Protection of guinea pigs from a lethal EBOV challenge by small interefering RNAs targeting the RNA-dependent RNA polymerase gene.
  • 68  Warfield KL, Swenson DL, Olinger GG et al.: Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers. PLoS Pathog.2,e1 (2006).•• Describes the antiviral effect of antisense oligomers targeting EBOV genes in monkeys.
  • 69  Enterlein S, Warfield KL, Swenson DL et al.: VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob. Agents Chemother.50,984–993 (2006).
  • 70  Müller S, Möller P, Bick MJ et al.: Inhibition of filovirus replication by the zinc finger antiviral protein. J. Virol.81(5),2391–2400 (2006).
  • 71  Kash JC, Mühlberger E, Carter V et al.: Global suppression of the host antiviral response by Ebola- and Marburg viruses: increased antagonism of the type I interferon response is associated with enhanced virulence. J. Virol.80,3009–3020 (2006).• Describes the correlation of replication efficiency and the ability to suppress the antiviral response.
  • 72  Watanabe S, Watanabe T, Noda T et al.: Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics. J. Virol.78,999–1005 (2004).• First description of an infectious virus-like particle system for EBOV.
  • 73  Towner JS, Paragas J, Dover JE et al.: Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology332,20–27 (2005).