We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

3D polymer scaffolds for tissue engineering

    K Seunarine

    † Author for correspondence

    University of Glasgow Centre for Cell Engineering, Glasgow G12 8QQ, UK.

    ,
    N Gadegaard

    University of Glasgow Centre for Cell Engineering, Glasgow G12 8QQ, UK.

    ,
    M Tormen

    TASC Laboratory of the Istituto Nazionale della Fisica della Materia, S.S.14 km. 163,5, I-34012, Basovizza-Trieste, Italy.

    ,
    DO Meredith

    University of Glasgow Centre for Cell Engineering, Glasgow G12 8QQ, UK.

    ,
    MO Riehle

    University of Glasgow Centre for Cell Engineering, Glasgow G12 8QQ, UK.

    &
    CDW Wilkinson

    University of Glasgow Centre for Cell Engineering, Glasgow G12 8QQ, UK.

    Published Online:https://doi.org/10.2217/17435889.1.3.281

    This review discusses some of the most common polymer scaffold fabrication techniques used for tissue engineering applications. Although the field of scaffold fabrication is now well established and advancing at a fast rate, more progress remains to be made, especially in engineering small diameter blood vessels and providing scaffolds that can support deep tissue structures. With this in mind, we introduce two new lithographic methods that we expect to go some way to addressing this problem.

    Bibliography

    • Langer R, Vacanti J: Tissue engineering. Science260,920–926 (1993).
    • Hutmacher DW, Risbud V: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol.22,354–362 (2004).
    • Atala A, Bauer SB, Soker S et al.: Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet367,1241–1246 (2006).
    • Katoh K, Tanabe T, Yamaguchi K: Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials25(18),4255–4262 (2004).
    • Freed LE, Marquis JC, Nohrla A et al.: Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res.27,11–23 (1993).
    • Mikos AG, Wald HL, Sarakinos G et al.: Biodegradable cell transplantation devices for tissue regeneration. MRS Symposium Proceedings252,353–358 (1992).
    • Zhang JC, Wu LB, Jing DY et al.: A comparative study of porous scaffolds with cubic and spherical macropores. Polymer46,4979–4985 (2005).
    • Horak D, Kroupova J, Slouf M et al.: Poly(2-hydroxyethyl methacrylate)-based slabs as a mouse embyonic stem cell support. Biomaterials25(22),5249–5260 (2004).
    • Thomson RC, Yaszemski MJ, Powers JM et al.: Hydroxyapatite fiber reinforced poly(e-hydroxy ester) foams for bone regeneration. Biomaterials19(21),1935–1943 (1998).
    • 10  Mikos AG, Thorsen AJ, Czerwonka LA et al.: Preparation and characterization of poly(L-lactic acid) foams. Polymer35,1068–1077 (1994).
    • 11  Reignier J, Huncault MA: Preparation of interconnected poly(i-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer47,4703–4717 (2006).
    • 12  Mooney DJ, Baldwin DF, Suh NP et al.: Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without use of organic solvents. Biomaterials17(14),1417–1422 (1996).
    • 13  Lanza RP, Langer R, Vacanti J: Principles of Tissue Engineering (2nd Edition). Academic Press, CA, USA (2002).
    • 14  Lips PAM, Velthoen IW, Dijkstra PJ et al.: Gas foaming of segmented poly(ester amide) films. Polymer46,9396–9403 (2005).
    • 15  Quirk RA, France RM, Shakesheff KA et al.: Supercritical fluid technologies and tissue engineering scaffolds. Curr. Opin. Solid State Mat. Sci.8,313–321 (2004).
    • 16  Harris LD, Kim BS, Mooney DJ: Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res.42,396–402 (1998).
    • 17  Nam YS, Yoon JJ, Park TG: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res.53,1–7 (2000).
    • 18  Kim TK, Yoon JJ, Lee DS et al.: Gas foamed open porous biodegradable polymetric microspheres. Biomaterials27(2),152–159 (2006).
    • 19  Lo H, Ponticiello MS, Leong KW: Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng.1,15–28 (1995).
    • 20  Schugens C, Maquet V, Grandfils C et al.: Polyactide macroporous biodegradable implants for cell transplantation II. Preparation of polyactide foams for liquid-liquid phase separation. J. Biomed. Mater. Res.30,449–461 (1996).
    • 21  Yang F, Qu X, Cui W et al.: Manufacturing and morphology structure of polyactide-type microtubules oreientation-structured scaffolds. Biomaterials27(28),4923–4933 (2006).
    • 22  Whang K, Thomas CH, Healy KE et al.: A novel method to fabricate bioabsorbable scaffolds. Polymer30(4),837–842 (1995).
    • 23  Liu X, Won Y, Ma PX: Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Biomaterials27(21),3980–3987 (2006).
    • 24  Yoshimoto H, Shin YM, Terai H et al.: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials24(12),2077–2082 (2003).
    • 25  Baker SC, Atkin N, Gunning PA et al.: Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials27(16),3136–3146 (2006).
    • 26  Piperno S, Lozzi L, Rastelli R et al.: PMMA nanofibers production by electrospinning. Appl. Surf. Sci.252(15),5583–5586 (2006).
    • 27  Ji Y, Ghosh K, Shu XZ et al.: Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials27(20),3782–3792 (2006).
    • 28  Williamson MR, Black R, Kielty C: PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials27(19),3608–3616 (2006).
    • 29  Kidoaki S, Kwon IK, Matsudu T: Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials26(1),37–46 (2005).
    • 30  Demir MM, Yilgor I, Yilgor E et al.: Electrospinning of polyurethane fibers. Polymer43,3303–3309 (2002).
    • 31  Vaz CM, van Tuijl S, Bouten CVC et al.: Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater.1(5),575–582 (2005).
    • 32  Yan Y, Xiong Z, Hu Y et al.: Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Zhang Materials Lett.57,2623–2628 (2003).
    • 33  Tan KH, Chua CK, Leong KF et al.: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials24(18),3115–3123 (2003).
    • 34  Williams JM, Adewunmi A, Schek RM et al.: Bone tissue engineered using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials26(23),4817–4827 (2005).
    • 35  Lam C. XF, Mo XM, Teoh SH et al.: Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Engin.20(1–2),49–56 (2002).
    • 36  Kim SS, Utsunomiya H, Koski JA et al.: Survival and function of hepatocytes on a novel three dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg.228(1),8–13 (1998).
    • 37  Lee M, Dunn JCY, Wu BM: Scaffold fabrication by indirect three-dimensional printing. Biomaterials26(20),4281–4289 (2005).
    • 38  Taboas JM, Maddox RD, Krebsbach PH et al.: Indirect solid freeform fabrication of local and global porous, biomimetric and composite 3D polymer-ceramic scaffolds. Biomaterials24(1),181–194 (2003).
    • 39  Mondrinos MJ, Dembzynski R, Lu L et al.: Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials27(25),4399–4408 (2006).
    • 40  Zein I, Hutmacher DW, Tan KC et al.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials23(4),1169–1185 (2002).
    • 41  Chua CK, Long KF: Rapid Prototyping: Principles and Applications in Manufacturing. Wiley, NY, USA (1997).
    • 42  Tsang VL, Bhatia SN: Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev.56,1635–1647 (2004).
    • 43  Yang S, Leong K, Du Z et al.: The design of scaffolds for use in tissue engineering. Part II rapid prototyping techniques. Tissue Eng.8,1–11 (2002).
    • 44  Nguyen KT, West JL: Photopolymerizable hydrogels for tissue engineering applications. Biomaterials23(22),4307–4314 (2002).
    • 45  Ma Z, Kotaki M, Yong T et al.: Surface engineering of electrospun polyethylene teraphthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials26(15),2527–2536 (2005).
    • 46  Goodman SL, Sims PA, Albrecht RM: Three-dimensional extracellular matrix textured biomaterials. Biomaterials17(21),2087–2095 (1996).
    • 47  Wu L, Jing D, Ding J: A “room temperature” injection molding/particulate leaching approach for fabrication of biodegradable thee-dimensional porous scaffolds. Biomaterials27(2),185–191 (2006).
    • 48  Vozzi G, Flaim C, Ahluwalia A et al.: Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials24,2533–2540 (2003).
    • 49  Yaszemski MJ, Payne RG, Hayes WC et al.: Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials17(2),175–185 (1996).
    • 50  Sachlos E, Reis N, Ainsley C et al.: Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials24(8),1487–1497 (2003).
    • 51  Sachlos E, Czernuszka JT: Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater.5,29–40 (2003).
    • 52  Curtis A, Wilkinson CDW: Nanotechniques and approaches in nanobiotechnology. Trends Biotechnol.19,97–101 (2001).
    • 53  Gadegaard N, Thoms S, Macintyre DS et al.: Arrays of nano-dots for cellular engineering. Microelectronic Eng.67–68(1),162–168 (2003).
    • 54  Toyota E, Washio M: Extendibility of proximity x-ray lithography to 25 nm and below. J. Vac. Sci. Techol.B20(6),2979–2983 (2002).
    • 55  Seunarine K, Tormen M, Gadegaard N et al.: Progress towards tubes with regular nano-patterned inner surfaces. J. Vac. Sci. Technol. B (In Press) (2006).
    • 56  Gadegaard N, Martines E, Riehle MO et al.: Applications of nano-patterning to tissue engineering. Microelectronic Eng.83,1577–1581 (2006).
    • 57  Wilkinson CDW, Riehle M, Wood M et al.: The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mat. Sci. Eng. C19,263–269 (2002).
    • 58  Pattison MA, Wurster S, Webster TJ et al.: Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials26(15),2491–2500 (2005).
    • 59  Yoo HS, Lee EA, Yoon JJ et al.: Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials26(14),1925–1933 (2005).
    • 60  Lee SB, Kim YH, Chong MS et al.: Study of gelatine-containing artificial skin V: fabrication of gelatine scaffolds using a salt-leaching method. Biomaterials26(14),1961–1968 (2005).
    • 61  Mathieu LM, Mueller TL, Bourban P-E et al.: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials27(6),905–916 (2006).
    • 62  Zong X, Bien H, Chung C-Y et al.: Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials26(26),5530–5338 (2005).
    • 63  Xu CY, Inai R, Kotaki M et al.: Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials25(5),877–886 (2004).
    • 64  Riboldi SA, Sampaolesi M, Neuenschwander P et al.: Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials26(22),4606–4615 (2005).
    • 65  Yang F, Murugan R, Wang S et al.: Electrospinning of nano/microscale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials26(15),2603–2610 (2005).
    • 66  Chen VJ, Smith LA, Ma PX: Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials27(21),3973–3979 (2006).
    • 67  Bryant SJ, Anseth KS: The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials22(6),619–626 (2001).
    • 68  Boland ED, Wnek GE, Simpson DG et al.: Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. Pure Appl. Chem.A38(12),1231–1243 (2001).
    • 69  Boland ED, Coleman BD, Barnes CP et al.: Electrospinning polydioxanone for biomedical applications. Acta Biomater.1(1),115–123 (2005).
    • 70  Kim JS, Reneker DH: Polymer Compos.20,124–131 (1999).
    • 71  Jun HW, West JL: Endothelialization of microporous YIGSR/PEG-modified polyurethaneurea. Tissue Eng.11,1135–1140 (2005).
    • 72  Shastri VP, Martin I, Langer R: Macroporous polymer foams by hydrocarbon templating. Proc. Natl Acad. Sci. USA97(5),1970–1975 (2000).
    • 73  Guo HB, Miao X, Chen Y et al.: Charactierization of hydroxyapatite- and bioglass-316L fibre composites prepared by spark plasma sintering. Mater. Lett.58(3),304–307 (2004).
    • 74  Hanada S, Matsumoto H, Watanabe S: International Congress Series1284,239–247 (2005).
    • 75  Hashemi J, Chandrashekar N, Slauterbeck J: The mechanical properties of the human patellar tendon and correlated to its mass density and are independent of sex. Clin Biomech (Bristol, Avon)20(6),645–652 (2005).
    • 76  Niebur GL, Feldstein MJ, Keaveny TM: Biaxial failure behaviour of bovine tibial trabecular bone. J. Biomech. Eng.124(6),699–705 (2002).
    • 101  American Society of Transplant Surgeons www.asts.org/may7testimony.cfm
    • 102  Castle Island: selective laser sintering http:home.att.net/∼castleisland/sls.htm
    • 103  MatWeb: material property data www.matweb.com