We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Metabolic brain imaging by magnetic resonance

    Edward J Novotny Jr

    Yale University, School of Medicine, Pediatrics, Neurology & Neurosurgery, Department of Pediatrics, 333 Cedar Street, PO Box 208064, New Haven, CT 06520, USA.

    Published Online:https://doi.org/10.2217/14796708.1.5.659

    Novel magnetic resonance methods have been developed to noninvasively measure biochemical compounds in the human brain as guided by magnetic resonance imaging. Together, these methods are referred to as magnetic resonance spectroscopy (MRS) and can be divided into three major categories: single voxel MRS, magnetic resonance spectroscopic imaging and dynamic MRS, which is a novel adaption of the first method. The techniques and range of biochemical compounds that can be measured safely and serially are advancing rapidly, with many technical developments. MRS methods, when applied to the human brain, have an important diagnostic role, help monitor and guide therapeutic interventions and provide a tool to investigate the mechanisms of neuropsychiatric disease processes, normal brain development and neuropharmacology in vivo.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Barkovich AJ, Kuzniecky RI: Neuroimaging of focal malformations of cortical development. J. Clin. Neurophysiol.13(6),481–494 (1996).
    • Sowell ER, Thompson PM, Rex D et al.: Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cereb. Cortex12(1),17–26 (2002).
    • Giedd JN, Blumenthal J, Jeffries NO et al.: Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci.2(10),861–863 (1999).
    • Born AP, Miranda MJ, Rostrup E et al.: Functional magnetic resonance imaging of the normal and abnormal visual system in early life. Neuropediatrics31(1),24–32 (2000).
    • Pugh KR, Mencl WE, Jenner AR et al.: Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Ment. Retard. Dev. Disabil. Res. Rev.6(3),207–213 (2000).
    • Gaillard WD, Pugliese M, Grandin CB et al.: Cortical localization of reading in normal children: an fMRI language study. Neurology57(1),47–54 (2001).
    • Mencl WE, Pugh KR, Shaywitz SE et al.: Network analysis of brain activations in working memory: behavior and age relationships. Microsc. Res. Tech.51(1),64–74 (2000).
    • Bookheimer SY, Dapretto M, Karmarkar U: Functional MRI in children with epilepsy. Developmental Neuroscience21(3–5),191–199 (1999).
    • Temple E, Poldrack RA, Protopapas A et al.: Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from functional MRI. Proc. Natl Acad. Sci. USA97(25),13907–13912 (2000).
    • 10  Novotny EJ Jr, Hyder F, Shevell M, Rothman DL: GABA changes with vigabatrin in the developing human brain. Epilepsia40(4),462–466 (1999).
    • 11  Petroff OA: GABA and glutamate in the human brain. Neuroscientist8(6),562–573 (2002).
    • 12  Huppi PS, Fusch C, Boesch C et al.: Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr. Res.37(2),145–150 (1995).
    • 13  Pfeuffer J, Juchem C, Merkle H, Nauerth A, Logothetis NK: High-field localized 1H NMR spectroscopy in the anesthetized and in the awake monkey. Magn. Reson. Imaging22(10),1361–1372 (2004).
    • 14  Ugurbil K, Adriany G, Andersen P et al.: Ultrahigh field magnetic resonance imaging and spectroscopy. Magn. Reson. Imaging21(10),1263–1281 (2003).
    • 15  Cecil KM: MR spectroscopy of metabolic disorders. Neuroimaging Clin. N. Am.16(1),87–116 (2006).• Excellent review of the magnetic resonance spectroscopy (MRS) findings in several neurometabolic and neurogenetic disorders.
    • 16  Narayana PA: Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J. Neuroimaging15(Suppl. 4),S46–S57 (2005).
    • 17  Nelson SJ: Magnetic resonance spectroscopic imaging. Evaluating responses to therapy for gliomas. IEEE Eng. Med. Biol. Mag.23(5),30–39 (2004).•• Combines magnetic resonance imaging and magnetic resonance spectroscopic imaging to assess response to therapy in individual patients.
    • 18  Hetherington HP, Kim JH, Pan JW, Spencer DD: 1H and 31P spectroscopic imaging of epilepsy: spectroscopic and histologic correlations. Epilepsia45(Suppl. 4),17–23 (2004).
    • 19  Cendes F, Knowlton RC, Novotny E et al.: Magnetic resonance spectroscopy in epilepsy: Clinical issues. Epilepsia43(Suppl. 1),32–39 (2002).• Excellent review of the clinical applications of MRS in epilepsy.
    • 20  Petroff OA, Mattson RH, Rothman DL: Proton MRS: GABA and glutamate. Adv. Neurol.83,261–271 (2000).
    • 21  Duncan JS: Brain imaging in idiopathic generalized epilepsies. Epilepsia46(Suppl. 9),108–111 (2005).
    • 22  Mayer D, Spielman DM: Detection of glutamate in the human brain at 3 T using optimized constant time point resolved spectroscopy. Magn. Reson. Med.54(2),439–442 (2005).
    • 23  Pan JW, Stein DT, Telang F et al.: Spectroscopic imaging of glutamate C4 turnover in human brain. Magn. Reson. Med.44(5),673–679 (2000).
    • 24  Petroff OA, Behar KL, Rothman DL: New NMR measurements in epilepsy. Measuring brain GABA in patients with complex partial seizures. Adv. Neurol.79,939–945 (1999).
    • 25  de Graaf RA, Pan JW, Telang F et al.: Differentiation of glucose transport in human brain gray and white matter. J. Cereb. Blood Flow Metab.21(5),483–492 (2001).
    • 26  Weglage J, Wiedermann D, Denecke J et al.: Individual blood–brain barrier phenylalanine transport in siblings with classical phenylketonuria. J. Inherit. Metab. Dis.25(6),431–436 (2002).
    • 27  Mason G, Bendszus M, Meyerhoff D et al.: Magnetic resonance spectroscopic studies of alcoholism: from heavy drinking to alcohol dependence and back again. Alcohol Clin. Exp. Res.29(1),150–158 (2005).
    • 28  Rothman DL, Behar KL, Hyder F, Shulman RG: In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Ann. Rev. Physiol.65,401–427 (2003).
    • 29  Golder W: Magnetic resonance spectroscopy in clinical oncology. Onkologie27(3),304–309 (2004).
    • 30  Lyoo IK, Renshaw PF: Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol.  Psychiatry51(3),195–207 (2002).
    • 31  Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E: NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed.18(3),143–162 (2005).