We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Image-guided radiation therapy: current and future directions

    Ron R Allison

    † Author for correspondence

    The Brody School of Medicine at East Carolina University, Department of Radiation Oncology, 600 Moye Blvd, Greenville, NC 27858-4354, USA.

    ,
    Hiram A Gay

    The Brody School of Medicine at East Carolina University, Department of Radiation Oncology, 600 Moye Blvd, Greenville, NC 27858-4354, USA.

    ,
    Helvecio C Mota

    The Brody School of Medicine at East Carolina University, Department of Radiation Oncology, 600 Moye Blvd, Greenville, NC 27858-4354, USA.

    &
    Claudio H Sibata

    The Brody School of Medicine at East Carolina University, Department of Radiation Oncology, 600 Moye Blvd, Greenville, NC 27858-4354, USA.

    Published Online:https://doi.org/10.2217/14796694.2.4.477

    Since its discovery, ionizing radiation has been a cornerstone of cancer treatment. In step with technological advances, radiation therapy has strived to increase its therapeutic ratio. With the advent of 3D and cross-sectional imaging, and the ability to modulate the radiation beam, the current age of radiation oncology was initiated, promising better tumor control rates with fewer side effects. However, these ever more precise and conformal treatments have also revealed the importance of accounting for organ and tumor motion. Efforts to understand and compensate for the uncertainties caused by movement are required to ensure accurate conformal radiation therapy. This review will explore the current and future directions of image-guided radiation therapy, whose goal is to increase the accuracy of radiotherapy.

    Bibliography

    • Brahme A: Optimization of stationary and moving beam radiation therapy techniques. Radiother. Oncol.12(2),129–140 (1988).
    • Kry SF, Salehpour M, Followill DS et al.: The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.62(4),1195–1203 (2005).
    • Wu J, Haycocks T, Alasti H et al.: Positioning errors and prostate motion during conformal prostate radiotherapy using on-line isocentre set-up verification and implanted prostate markers. Radiother. Oncol.61(2),127–133 (2001).
    • Plathow C, Fink C, Ley S et al.: Measurement of tumor diameter-dependent mobility of lung tumors by dynamic MRI. Radiother. Oncol.73(3),349–354 (2004).
    • Mageras GS, Pevsner A, Yorke ED et al.: Measurement of lung tumor motion using respiration-correlated CT. Int. J. Radiat. Oncol. Biol. Phys.60(3),933–941 (2004).
    • Plathow C, Ley S, Fink C et al.: Analysis of intrathoracic tumor mobility during whole breathing cycle by dynamic MRI. Int. J. Radiat. Oncol. Biol. Phys.59(4),952–959 (2004).
    • Hong TS, Tome WA, Chappell RJ et al.: The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.61(3),779–788 (2005).
    • Siebers JV, Keall PJ, Wu Q et al.: Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans. Int. J. Radiat. Oncol. Biol. Phys.63(2),422–433 (2005).
    • Nishiyama T, Tomita Y, Takahashi K: Influence of androgen deprivation therapy on volume of anatomic zones of prostate in patients with prostate cancer using magnetic resonance imaging. Urology63(5),917–921 (2004).
    • 10  Barker JL Jr, Garden AS, Ang KK et al.: Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int. J. Radiat. Oncol. Biol. Phys.59(4),960–970 (2004).
    • 11  Kuban DA, Dong L, Cheung R et al.: Ultrasound-based localization. Semin. Radiat. Oncol.15(3),180–191 (2005).
    • 12  Fuss M, Salter BJ, Cavanaugh SX et al.: Daily ultrasound-based image-guided targeting for radiotherapy of upper abdominal malignancies. Int. J. Radiat. Oncol. Biol. Phys.59(4),1245–1256 (2004).
    • 13  Lattanzi J, McNeeley S, Pinover W et al.: A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.43(4),719–725 (1999).
    • 14  Little DJ, Dong L, Levy LB et al.: Use of portal images and BAT ultrasonography to measure setup error and organ motion for prostate IMRT: implications for treatment margins. Int. J. Radiat. Oncol. Biol. Phys.56(5),1218–1224 (2003).
    • 15  Trichter F, Ennis RD: Prostate localization using transabdominal ultrasound imaging. Int. J. Radiat. Oncol. Biol. Phys.56(5),1225–1233 (2003).
    • 16  Lattanzi J, McNeeley S, Hanlon A et al.: Ultrasound-based stereotactic guidance of precision conformal external beam radiation therapy in clinically localized prostate cancer. Urology55(1),73–78 (2000).
    • 17  Chandra A, Dong L, Huang E et al.: Experience of ultrasound-based daily prostate localization. Int. J. Radiat. Oncol. Biol. Phys.56(2),436–447 (2003).
    • 18  Serago CF, Chungbin SJ, Buskirk SJ et al.: Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.53(5),1130–1138 (2002).
    • 19  Fransson A, Andreo P, Potter R: Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol.177(2),59–73 (2001).
    • 20  Bednarz G, Downes MB, Corn BW et al.: Evaluation of the spatial accuracy of magnetic resonance imaging-based stereotactic target localization for γ-knife radiosurgery of functional disorders. Neurosurgery45(5),1156–1161 (1999).
    • 21  Zanzonico P: PET-based biological imaging for radiation therapy treatment planning. Crit. Rev. Eukaryot. Gene Expr.16(1),61–101 (2006).
    • 22  Rajendran JG, Krohn KA: Imaging hypoxia and angiogenesis in tumors. Radiol. Clin. North Am.43(1),169–187 (2005).
    • 23  Rajesh A, Coakley FV: MR imaging and MR spectroscopic imaging of prostate cancer. Magn. Reson. Imaging Clin. N. Am.12(3),557–579 (2004).
    • 24  Coakley FV, Qayyum A, Kurhanewicz J: Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J. Urol.170(6 Pt 2),S69–S75 (2003).
    • 25  Graves EE, Pirzkall A, Nelson SJ et al.: Registration of magnetic resonance spectroscopic imaging to computed tomography for radiotherapy treatment planning. Med. Phys.28(12),2489–2496 (2001).
    • 26  Pirzkall A, Nelson SJ, McKnight TR et al.: Metabolic imaging of low-grade gliomas with three-dimensional magnetic resonance spectroscopy. Int. J. Radiat. Oncol. Biol. Phys.53(5),1254–1264 (2002).
    • 27  Pirzkall A, McKnight TR, Graves EE et al.: MR-spectroscopy guided target delineation for high-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys.50(4),915–928 (2001).
    • 28  Sureshbabu W, Mawlawi O: PET/CT imaging artifacts. J. Nucl. Med. Technol.33(3),156–161 (2005).
    • 29  SongPY, Washington M, Vaida F et al.: A comparison of four patient immobilization devices in the treatment of prostate cancer patients with three dimensional conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.34(1),213–219 (1996).
    • 30  Crook JM, Raymond Y, Salhani D et al.: Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother. Oncol.37(1),35–42 (1995).
    • 31  Dehnad H, Nederveen AJ, van der Heide UA et al.: Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. Radiother. Oncol.67(3),295–302 (2003).
    • 32  Kitamura K, Shirato H, Shimizu S et al.: Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT). Radiother. Oncol.62(3),275–281 (2002).
    • 33  Poggi MM, Gant DA, Sewchand W et al.: Marker seed migration in prostate localization. Int. J. Radiat. Oncol. Biol. Phys.56(5),1248–1251 (2003).
    • 34  Buck D, Alber M, Nusslin F: Potential and limitations of the automatic detection of fiducial markers using an amorphous silicon flat-panel imager. Phys. Med. Biol.48(6),763–774 (2003).
    • 35  Scarbrough TJ, Golden NM, Ting JY et al.: Comparison of ultrasound and implanted seed marker prostate localization methods: implications for image-guided radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.65(2),378–387 (2006).
    • 36  Dobler B, Mai S, Ross C et al.: Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition. Strahlenther Onkol.182(4),240–246 (2006).
    • 37  Paskalev K, Feigenberg S, Jacob R et al.: Target localization for post-prostatectomy patients using CT and ultrasound image guidance. J. Appl. Clin. Med. Phys.6(4),40–49 (2005).
    • 38  Jaffray DA, Siewerdsen JH, Wong JW et al.: Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.53(5),1337–1349 (2002).
    • 39  Letourneau D, Wong JW, Oldham M et al.: Cone-beam-CT guided radiation therapy: technical implementation. Radiother. Oncol.75(3),279–286 (2005).
    • 40  Oldham M, Letourneau D, Watt L et al.: Cone-beam-CT guided radiation therapy: a model for on-line application. Radiother. Oncol.75(3),271–278 (2005).
    • 41  Pouliot J, Bani-Hashemi A, Chen J et al.: Low-dose megavoltage cone-beam CT for radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.61(2),552–560 (2005).
    • 42  Sillanpaa J, Chang J, Mageras G et al.: Developments in megavoltage cone beam CT with an amorphous silicon EPID: reduction of exposure and synchronization with respiratory gating. Med. Phys.32(3),819–829 (2005).
    • 43  SonkeJJ, Zijp L, Remeijer P et al.: Respiratory correlated cone beam CT. Med. Phys.32(4),1176–1186 (2005).
    • 44  SykesJR, Amer A, Czajka J et al.: A feasibility study for image-guided radiotherapy using low dose, high speed, cone beam x-ray volumetric imaging. Radiother. Oncol.77(1),45–52 (2005).
    • 45  Amies C, Bani-Hashemi A, Celi JC et al.: A multi-platform approach to image-guided radiation therapy (IGRT). Med. Dosim.31(1),12–19 (2006).
    • 46  Cheng CW, Wong J, Grimm L et al.: Commissioning and clinical implementation of a sliding gantry CT scanner installed in an existing treatment room and early clinical experience for precise tumor localization. Am. J. Clin. Oncol.26(3),E28–E36 (2003).
    • 47  Ma CM, Paskalev K: In-room CT techniques for image-guided radiation therapy. Med. Dosim.31(1),30–39 (2006).
    • 48  Shiu AS, Chang EL, Ye JS et al.: Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int. J. Radiat. Oncol. Biol. Phys.57(3),605–613 (2003).
    • 49  Wong JR, Grimm L, Uematsu M et al.: Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int. J. Radiat. Oncol. Biol. Phys.61(2),561–569 (2005).
    • 50  Mackie TR, Balog J, Ruchala K et al.: Tomotherapy. Semin. Radiat. Oncol.9(1),108–117 (1999).
    • 51  Fenwick JD, Tome WA, Jaradat HA et al.: Quality assurance of a helical tomotherapy machine. Phys. Med. Biol.49(13),2933–2953 (2004).
    • 52  Fenwick JD, Tome WA, Kissick MW et al.: Modelling simple helically delivered dose distributions. Phys. Med. Biol.50(7),1505–1517 (2005).
    • 53  Langen KM, Zhang Y, Andrews RD et al.: Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. Int. J. Radiat. Oncol. Biol. Phys.62(5),1517–1524 (2005).
    • 54  Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL: The Cyberknife: a frameless robotic system for radiosurgery. Stereotact. Funct. Neurosurg.69(1–4 Pt 2),124–128 (1997).
    • 55  CyberKnife radiosurgery: Clin. Privil White Pap.228,1–12 (2005).
    • 56  Saito K, Kajiwara K, Ishihara H et al.: CyberKnife robotic radiosurgery. Neurosurgery58(4),277–288 (2006).
    • 57  Welch WC, Gerszten PC: Accuray CyberKnife image-guided radiosurgical system. Expert Rev. Med. Devices2(2),141–147 (2005).
    • 58  Linthout N, Verellen D, Tournel K et al.: Six dimensional analysis with daily stereoscopic x-ray imaging of intrafraction patient motion in head and neck treatments using five points fixation masks. Med. Phys.33(2),504–513 (2006).
    • 59  Verellen D, Soete G, Linthout N et al.: Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic x-ray imaging. Radiother. Oncol.67(1),129–141 (2003).
    • 60  Whyte RI, Crownover R, Murphy MJ et al.: Stereotactic radiosurgery for lung tumors: preliminary report of a Phase I trial. Ann. Thorac. Surg.75(4),1097–1101 (2003).
    • 61  Zhang T, Orton NP, Tome WA: On the automated definition of mobile target volumes from 4D-CT images for stereotactic body radiotherapy. Med. Phys.32(11),3493–3502 (2005).
    • 62  Berson AM, Emery R, Rodriguez L et al.: Clinical experience using respiratory gated radiation therapy: comparison of free-breathing and breath-hold techniques. Int. J. Radiat. Oncol. Biol. Phys.60(2),419–426 (2004).
    • 63  Lu W, Olivera GH, Chen Q et al.: Automatic re-contouring in 4D radiotherapy. Phys. Med. Biol.51(5),1077–1099 (2006).
    • 64  Pos FJ, Hulshof M, Lebesque J et al.: Adaptive radiotherapy for invasive bladder cancer: a feasibility study. Int. J. Radiat. Oncol. Biol. Phys.64(3),862–868 (2006).
    • 65  Jaffray DA: Emergent technologies for 3-dimensional image-guided radiation delivery. Semin. Radiat. Oncol.15(3),208–216 (2005).
    • 66  Apisarnthanarax S, Chao KS: Current imaging paradigms in radiation oncology. Radiat. Res.163(1),1–25 (2005).