We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Genetic susceptibility to eating disorders: associated polymorphisms and pharmacogenetic suggestions

    Palmiero Monteleone

    † Author for correspondence

    Department of Psychiatry, University of Naples SUN, Largo Madonna delle Grazie, 80138 Naples, Italy.

    &
    Mario Maj

    Department of Psychiatry, University of Naples SUN, Largo Madonna delle Grazie, 80138 Naples, Italy.

    Published Online:https://doi.org/10.2217/14622416.9.10.1487

    Anorexia nervosa (AN), bulimia nervosa (BN) and binge-eating disorder (BED) are characterized by abnormal eating behaviors often resulting in dramatic physical consequences for the patients. The etiology of eating disorders (EDs) is currently unknown; however, a strong genetic contribution is likely to be involved. To date, the majority of genetic studies have focused on candidate genes, and polymorphic variants of genes coding for substances likely to be involved in the etiopathogenesis of EDs have been assessed for association with AN, BN, BED and/or ED-related phenotypic traits. Results have been generally inconsistent and cannot be considered conclusive because of several methodological flaws and differences, such as small sample sizes, ethnic heterogeneity of studied populations, lack of statistical correction for multiple testing, adoption of different diagnostic criteria and population stratification. Although, at present, no convincing evidence for associations of candidate genes with EDs has been provided, the 5-HT2A receptor gene and the BDNF gene seem to be promising candidates for genetic influences on AN, since polymorphic variants of these genes have been found quite consistently, although not specifically, linked to AN restricting subtype in large sample studies. Moreover, pharmacogenetic investigations have suggested a possible role of some gene polymorphisms in predicting the response to treatment with selective serotonin reuptake inhibitors in BN, but results are still preliminary. The heterogeneity of ED phenotypes is believed to represent the most relevant variable responsible for contradictory and not conclusive results. Future studies should focus on more homogeneous subgroups, either relying on specific ED traits or identifying endophenotypes. This will be useful also for prevention and treatment of EDs.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 4th Edition. American Psychiatric Press, Washington DC, USA (1990).
    • van Hoeken D, Lucas AR, Hoek HW: Epidemiology. In: Neurobiology in the Treatment of Eating Disorders. Hoek HW, Treasure JL, Katzman MA (Eds.). John Wiley & Sons Ltd, Chichester, UK, 143–159 (1998).
    • Gillberg C, Rastam M: The etiology of anorexia nervosa. In: Neurobiology in the Treatment of Eating Disorders. Hoek HW, Treasure JL, Katzman MA (Eds.). John Wiley & Sons Ltd, Chichester, UK, 127–141 (1998).
    • Palmer RL: The aetiology of bulimia nervosa. In: Neurobiology in the Treatment of Eating Disorders. Hoek HW, Treasure JL, Katzman MA (Eds.). John Wiley & Sons Ltd, Chichester, UK, 143–159 (1998).
    • Gorwood P, Kipman A, Foulon C: The human genetics of anorexia nervosa. Eur. J. Pharmacol.480(1–3),163–170 (2003).
    • Kipman A, Gorwood P, Mouren-Simeoni MC, Ades J: Genetic factors in anorexia nervosa. Eur. Psychiatry14(4),189–198 (1999).
    • Lilenfeld LR, Kaye WH, Greeno CG: A controlled family study of anorexia nervosa and bulimia nervosa: psychiatric disorders in first-degree relatives and effects of proband comorbidity. Arch. Gen. Psychiatry55(7),603–610 (1998).
    • Strober M, Freeman R, Lampert C, Diamond J, Kaye W: Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am. J. Psychiatry157(3),393–401 (2000).
    • Bulik CM, Sullivan PF, Kendler KS: Heritability of binge-eating and broadly defined bulimia nervosa. Biol. Psychiatry44(12),1210–1218 (1998).
    • 10  Bulik CM, Sullivan PF, Wade TD, Kendler KS: Twin studies of eating disorders: a review. Int. J. Eat. Disord.27(1),1–20 (2000).
    • 11  Bulik C, Sullivan P, Tozzi F, Furberg H, Lichtenstein P, Pedersen N: Prevalence, heritability and prospective risk factors for anorexia nervosa. Arch. Gen. Psychiatry63,305–312 (2006).
    • 12  de Castro JM, Lilenfeld LRR: Influence of heredity on dietary restraint, disinhibition and perceived hunger in humans. Nutrition21,446–455 (2005).
    • 13  Keski-Rahkonen A, Neale BM, Bulik CM et al.: Intentional weight loss in young adults: sex-specific genetic and environmental effects. Obes. Res.13,745–753 (2005).
    • 14  Klump KL, McGue M, Iacono WG: Differential heritability of eating attitudes and behaviours in prepubertal verus pubertal twins. Int. J. Eat. Disord.33,287–292 (2003).
    • 15  Keel PK, Klump KL, Miller KB, McGue M, Iacono WG: Shared transmission of eating disorders and anxiety disorders. Int. J. Eat. Disord.38,99–105 (2005).
    • 16  Grice DE, Halmi KA, Fichter MM et al.: Evidence for a susceptibility gene for anorexia nervosa on chromosome. Am. J. Hum. Genet.70(3),787–792 (2002).•• First genome-wide scan study in anorexia nervosa, and reports a significant linkage for anorexia nervosa restricting subtype on chromosome 1.
    • 17  Bergen AW, van den Bree MB, Yeager M et al.: Candidate genes for anorexia nervosa in the 1p33–36 linkage region: serotonin 1D and δ opioid receptor loci exhibit significant association to anorexia nervosa. Mol. Psychiatry8(4),397–406 (2003).•• Confirms the linkage for anorexia nervosa on chromosome 1, and shows an association of anorexia nervosa with OPRD1 and HTRD1 candidate genes located in the chromosome 1 predisposition locus.
    • 18  Devlin B, Bacanu SA, Klump KL et al.: Linkage analysis of anorexia nervosa incorporating behavioral covariates. Hum. Mol. Genet.11(6),689–696 (2002).
    • 19  Bulik CM, Slof-Op’t Landt MCT, van Furth EF, Sullivan PF: The genetics of anorexia nervosa. Ann. Rev. Nutr.27,263–275 (2007).
    • 20  Bulik CM, Devlin B, Bacanu SA et al.: Significant linkage on chromosome 10p in families with bulimia nervosa. Am. J. Hum. Genet.72(1),200–207 (2003).•• This genome-wide screen of bulimia nervosa reports significant linkage for bulimia nervosa on chromosome 10 and a suggestive linkage on chromosome 14.
    • 21  Hager J, Dina C, Francke S et al.: A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat. Genet.20,304–308 (1998).
    • 22  Hinney A, Ziegler A, Oeffner F et al.: Independent confirmation of a major locus for obesity on chromosome 10. J. Clin. Endocrinol. Metab.85,2962–2965 (2000).
    • 23  Dong C, Wang S, Li W-D, Li D, Zhao H, Price RA: Interacting genetic loci on chromosome 20 and 10 influence extreme human obesity. Am. J. Hum. Genet.72,115–124 (2003).
    • 24  Bacanu SA, Bulik CM, Klump KL et al.: Linkage analysis of anorexia and bulimia nervosa cohorts using selected behavioral phenotypes as quantitative traits or covariates. Am. J. Med. Genet. B Neuropsychiatr. Genet.139(1),61–68 (2005).
    • 25  Blundell JE: Serotonin manipulations and the structure of feeding behavior. Appetite7,39–56 (1987).
    • 26  Lucki I: The spectrum of behaviors influenced by serotonin. Biol. Psychiatry44,151–162 (1998).
    • 27  Cloninger CR, Svrakic DM, Przbeck TR: A psychobiological model of temperament and characters. Arch. Gen. Psychiatry50,975–990 (1993).
    • 28  Heils A, Teufel A, Petri S et al.: Allelic variation of human serotonin transporter gene expression. J. Neurochem.66,2621–2624 (1999).
    • 29  Greenberg BD, Tolliver TJ, Huang SJ, Li Q, Bengel D, Murphy DL: Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am. J. Med. Genet.88,83–87 (1999).
    • 30  Fumeron F, Betoulle D, Aubert R, Herbeth B, Siest G, Rigaud D: Association of a functional 5-HT transporter gene polymorphism with anorexia nervosa and food intake. Mol. Psychiatry6(1),9–10 (2001).
    • 31  Matsushita S, Suzuki K, Murayama M et al.: Serotonin transporter regulatory region polymorphism is associated with anorexia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet.128(1),114–117 (2004).
    • 32  Hinney A, Barth N, Ziegler A et al.: Serotonin transporter gene-linked polymorphic region: allele distributions in relationship to body weight and in anorexia nervosa. Life Sci.61,295–303 (1997).
    • 33  Di Bella DD, Catalano M, Cavallini MC, Riboldi C, Bellodi L: Serotonin transporter linked polymorphic region in anorexia nervosa and bulimia nervosa. Mol. Psychiatry5(3),233–234 (2000).
    • 34  Sundaramurthy D, Pieri LF, Gape H, Markham AF, Campbell DA: Analysis of the serotonin transporter gene linked polymorphism (5-HTTLPR) in anorexia nervosa. Am. J. Med. Genet.96(1),53–55 (2000).
    • 35  Rybakowski F, Slopien A, Dmitrzak-Weglarz M, Czerski P, Rajewski A, Hauser J: The 5-HT2A–1438 A/G and 5-HTTLPR polymorphisms and personality dimensions in adolescent anorexia nervosa: association study. Neuropsychobiology53(1),33–39 (2006).
    • 36  Urwin RE, Bennetts BH, Wilcken B, Beumont PJ, Russell JD, Nunn KP: Investigation of epistasis between the serotonin transporter and norepinephrine transporter genes in anorexia nervosa. Neuropsychopharmacology28(7),1351–1355 (2003).
    • 37  Gorwood P: Eating disorders, serotonin transporter polymorphisms and potential treatment response. Am. J. Pharmacogenomics4,9–17 (2004).
    • 38  Lauzurica N, Hurtado A, Escartí A et al.: Polymorphisms within the promoter and the intron 2 of the serotonin transporter gene in a population of bulimic patients. Neurosci. Lett.352(3),226–230 (2003).
    • 39  Monteleone P, Santonastaso P, Mauri et al.: Investigation of the serotonin transporter regulatory region polymorphism in bulimia nervosa: relationships to harm avoidance, nutritional parameters, and psychiatric comorbidity. Psychosom. Med.68(1),99–103 (2006).• Outlines the relevance of the association of polymorphisms of candidate genes with eating-related phenotypic traits in bulimia nervosa, although no significant association with the categorical disorder is found.
    • 40  Monteleone P, Tortorella A, Castaldo E, Maj M: Association of a functional serotonin transporter gene polymorphism with binge eating disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(1),7–9 (2006).
    • 41  Steiger H, Joober R, Israel M et al.: The 5HTTLPR polymorphism, psychopathological symptoms, and platelet [3H-] paroxetine binding in bulimic syndromes. Int. J. Eat. Disord.37,57–60 (2005).
    • 42  Frieling H, Römer KD, Wilhelm J et al.: Association of catecholamine-O-methyltransferase and 5-HTTLPR genotype with eating disorder-related behavior and attitudes in females with eating disorders. Psychiatr. Genet.16(5),205–208 (2006).
    • 43  Ribasés M, Fernández-Aranda F, Gratacòs M et al.: Contribution of the serotoninergic system to anxious and depressive traits that may be partially responsible for the phenotypical variability of bulimia nervosa. J. Psychiatr. Res.42(1),50–57 (2008).
    • 44  Urwin R, Nunn K: Epistatic interaction between the monoamine oxidase A and serotonin transporter genes in anorexia nervosa. Eur. J. Hum. Genet.13,370–375 (2005).•• Shows an epistatic effect between the 5HTTLPR polymorphism and a SNP of the MAOA gene, since the risk of anorexia nervosa was eight-times greater in women with both the MAOA-L variant and the SS genotype as compared with women carrying the MAOA-L variant alone.
    • 45  Brewerton TD, Jimerson DC: Studies of serotonin function in anorexia nervosa. Psychiatry Res.62,31–42 (1996).
    • 46  Monteleone P, Brambilla F, Bortolotti F, Maj M: Serotonergic dysfunction across the eating disorders: relationship to eating behaviour, nutritional status and general psychopathology. Psychol. Med.30,1099–1110 (2000).
    • 47  Simansky KJ: Serotonergic control of the organization of feeding and satiety. Behav. Brain Res.73,37–42 (1996).
    • 48  Parsons MJ, D’Souza UM, Arranz MJ, Kerwin RW, Makoff AJ: The -1348A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol. Psychiatry56,406–410 (2004).
    • 49  Shimizu M, Kanazawa K, Matsuda Y et al.: Serotonin-2A receptor gene polymorphisms are associated with serotonin-induced platelet aggregation. Thromb. Res.112,137–142 (2003).
    • 50  Collier DA, Arranz MJ, Li T, Mupita D, Brown N, Treasure J: Association between 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet350,412 (1997).
    • 51  Collier DA, on behalf of all authors: 5-HT2A gene promoter polymorphism and anorexia nervosa. Authors’ reply. Lancet353,929 (1999).
    • 52  Sorbi S, Nacmias B, Tedde A, Ricca V, Mezzani B, Rotella CM: 5-HT2A promoter polymorphism in anorexia nervosa. Lancet.351,1785 (1998).
    • 53  Enoch MA, Kaye WH, Rotondo A, Greenberg BD, Murphy DL, Goldman D: 5-HT2A promoter polymorphism -1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet351,1785–1786 (1998).
    • 54  Nacmias B, Ricca V, Tedde A, Mezzani B, Rotella CM, Sorbi S: 5-HT2A receptor gene polymorphisms in anorexia nervosa and bulimia nervosa. Neurosci. Lett.277(2),134–136 (1999).
    • 55  Ricca V, Nacmias B, Cellini E, Di Bernardo M, Rotella CM, Sorbi S: 5-HT2A receptor gene polymorphism and eating disorders. Neurosci. Lett.323(2),105–108 (2002).
    • 56  Ricca V, Nacmias B, Boldrini M et al.: Psychopathological traits and 5-HT2A receptor promoter polymorphism (-1438 G/A) in patients suffering from anorexia nervosa and bulimia nervosa. Neurosci. Lett.365(2),92–96 (2004).
    • 57  Hinney A, Ziegler A, Nöthen MM, Remschmidt H, Hebebrand J: 5-HT2A receptor gene polymorphisms, anorexia nervosa, and obesity. Lancet350,1324–1325 (1997).
    • 58  Campbell DA, Sundaramurthy D, Markham AF, Pieri LF: Lack of association between 5-HT2A gene promoter polymorphism and susceptibility to anorexia nervosa. Lancet351,499 (1998).
    • 59  Ziegler A, Görg T: 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet353,929 (1999).
    • 60  Ando T, Komaki G, Karibe M et al.: 5-HT2A promoter polymorphism is not associated with anorexia nervosa in Japanese patients. Psychiatr. Genet.11(3),157–160 (2001).
    • 61  Nishiguchi N, Matsushita S, Suzuki K, Murayama M, Shirakawa O, Higuchi S: Association between 5HT2A receptor gene promoter region polymorphism and eating disorders in Japanese patients. Biol. Psychiatry50(2),123–128 (2001).
    • 62  Kipman A, Bruins-Slot L, Boni C et al.: 5-HT(2A) gene promoter polymorphism as a modifying rather than a vulnerability factor in anorexia nervosa. Eur. Psychiatry17(4),227–229 (2002).
    • 63  Gorwood P, Adès J, Bellodi L et al.: The 5-HT(2A) -1438G/A polymorphism in anorexia nervosa: a combined analysis of 316 trios from six European centres. Mol. Psychiatry.7(1),90–94 (2002).
    • 64  Bruce KR, Steiger H, Joober R et al.: Association of the promoter polymorphism -1438G/A of the 5-HT2A receptor gene with behavioural impulsiveness and serotonin function in women with bulimia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet.137,40–44 (2005).
    • 65  Fuentes JA, Lauzurica N, Hurtado A et al.: Analysis of the -1438 G/A polymorphism of the 5-HT2A serotonin receptor gene in bulimia nervosa patients with or without a history of anorexia nervosa. Psychiatr. Genet.14(2),107–109 (2004).
    • 66  Westberg L, Bah J, Råstam M et al.: Association between a polymorphism of the 5-HT2C receptor and weight loss in teenage girls. Neuropsychopharmacology26(6),789–793 (2002).
    • 67  Hu X, Giotakis O, Li T, Karwautz A, Treasure J, Collier DA: Association of the 5-HT2c gene with susceptibility and minimum body mass index in anorexia nervosa. Neuroreport14(6),781–783 (2003).
    • 68  Sodhi M, Kerwin R, Campbell I, Makoff A: A pharmacological study of variant 5-HT2C receptor proteins. Mol. Psychiatry4(Suppl. 1),94 (1999).
    • 69  Westberg L, Bah J, Rastam M et al.: Association between a polymorphism of the 5-HT2C receptor and weight loss in teenage girls. Neuropsychopharmacology26,789–793 (2002).
    • 70  Burnet PWJ, Smith KA, Cowen PJ, Fairburn CG, Harrison PJ: Allelic variation of the 5-HT2C receptor (HTR2C) in bulimia nervosa and binge eating disorder. Psychiatr. Genet.9,101–104 (1999).
    • 71  Hinney A, Herrmann H, Löhr T et al.: No evidence for an involvement of alleles of polymorphisms in the serotonin 1Dβ and 7 receptor genes in obesity, underweight or anorexia nervosa. Int. J. Obes. Relat. Metab. Disord.23(7),760–763 (1999).
    • 72  Brown KM, Bujac SR, Mann ET, Campbell DA, Stubbins MJ, Blundell JE: Further evidence of association of OPRD1 and HTR1D polymorphisms with susceptibility to anorexia nervosa. Biol. Psychiatry61(3),367–373 (2007).
    • 73  Levitan RD, Kaplan AS, Masellis M et al.: Polymorphism of the serotonin 5-HT1B receptor gene (HTR1B) associated with minimum lifetime body mass index in women with bulimia nervosa. Biol. Psychiatry50(8),640–643 (2001).
    • 74  Levitan RD, Kaplan AS, Masellis M, Basile VS, Richter MA, Kennedy JL: The serotonin-1Dβ receptor gene and severity of obsessive-compulsive disorder in women with bulimia nervosa. Eur. Neuropsychopharmacol.16(1),1–6 (2006).
    • 75  Han L, Nielsen DA, Rosenthal Ne et al.: No coding variant of the tryptophan hydroxylase gene detected in seasonal affective disorder, obsessive-compulsive disorder, anorexia nervosa, and alcoholism. Biol. Psychiatry45(5),615–619 (1999).
    • 76  Monteleone P, Tortorella A, Martiadis V, Serino I, Di Filippo C, Maj M: Association between A218C polymorphism of the tryptophan-hydroxylase-1 gene, harm avoidance and binge eating behavior in bulimia nervosa. Neurosci. Lett.421,42–46 (2007).
    • 77  Jonsson EG, Goldman D, Spurlock G et al. Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphism: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Eur. Arch. Psychiatry Clin. Neurosci.247,297–302 (1997).
    • 78  Kaye W, Strober M, Jimerson D: The neurobiology of eating disorders. In: The Neurobiology of Mental Illness. Charney D, Nestler E (Eds). Oxford University Press, NY, USA, 1112–1128 (2004).
    • 79  Vandenbergh DJ, Persico AM, Hawkins AL et al.: Human dopamine transporter gene (DAT1) maps to chromosome 5p.15.3 and displays a VNTR. Genomics14,1104–1106 (1992).
    • 80  van Ness SH, Owens MJ, Kilts CD: The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet.5,55 (2005).
    • 81  Shinohara M, Mizushima H, Hirano M et al.: Eating disorders with binge-eating behaviour are associated with the S allele of the 3´-UTR VNTR polymorphism of the dopamine transporter gene. J. Psychiatry Neurosci.29(2),134–137 (2004).
    • 82  Davis C, Levitan RD, Kaplan AS et al.: Dopamine transporter gene (DAT1) associated with appetite suppression to methylphenidate in a case-control study of binge eating disorder. Neuropsychopharmacology32(10),2199–2206 (2007).• In this study, binge eating disorder patients carrying the 9-repeat allele of the DAT1 gene had a greater appetite suppression following methylphenidate administration as compared to patients with 10/10 repeat DAT1 genotype, which may have therapeutic implications.
    • 83  Bergen AW, Yeager M, Welch RA et al.: Association of multiple DRD2 polymorphisms with anorexia nervosa. Neuropsychopharmacology30(9),1703–1710 (2005).
    • 84  Arinami T, Gao M, Hamaguchi H, Toru M: A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum. Mol. Genet.6,577–582 (1997).
    • 85  Cravchik A, Sibbey DR, Gejman PV: Functional analysis of the human D2 dopamine receptor missense variants. J. Biol. Chem.271,26013–26017 (1996).
    • 86  Duan J, Wainwright MS, Comeron JM et al.: Synonymous mutations in the human dopamine receptor 2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet.12,205–216 (2003).
    • 87  Laakso A, Pohjalainen T, Bergman J et al.: The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal l-amino acid decarboxylase in healthy subjects. Pharmacogenet. Genomics15 (6),387–391 (2005).
    • 88  Nisoli E, Brunani A, Borgomainerio E et al.: D2 dopamine receptor (DRD2) gene Taq1A polymorphism and the eating-related psychological traits in eating disorders (anorexia nervosa and bulimia) and obesity. Eat. Weight Disord.12(2),91–96 (2007).
    • 89  Bruins-Slot L, Gorwood P, Bouvard M et al.: Lack of association between anorexia nervosa and D3 dopamine receptor gene. Biol. Psychiatry43(1),76–78 (1998).
    • 90  Hinney A, Schneider J, Ziegler A et al.: No evidence for involvement of polymorphisms of the dopamine D4 receptor gene in anorexia nervosa, underweight, and obesity. Am. J. Med. Genet.88(6),594–597 (1999).
    • 91  Bachner-Melman R, Lerer E, Zohar AH et al.: Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am. J. Med. Genet. B Neuropsychiatr. Genet.144(6),748–756 (2007).
    • 92  Okuyama Y, Ishiguro H, Nankai M, Shibuia H, Watanabe A, Arinami T: Identification of a polymorphism in the promoter region of DRD4 associated with the human novelty seeking personality trait. Mol. Psychiatry5(1),64–69 (2000).
    • 93  Kaye WH, Jimerson DC, Lake CR, Ebert MH: Altered norepinephrine metabolism following long-term weight recovery in patients with anorexia nervosa. Psychiatry Res.14,333–342 (1985).
    • 94  Pirke KM, Kellner M, Philipp E, Laessle R, Krieg JC, Fichter MM: Plasma norepinephrine after a standardized test meal in acute and remitted patients with anorexia nervosa and in healthy controls. Biol. Psychiatry31,1074–1077 (1992).
    • 95  Urwin RE, Bennetts B, Wilcken B et al.: Anorexia nervosa (restrictive subtype) is associated with a polymorphism in the novel norepinephrine transporter gene promoter polymorphic region. Mol. Psychiatry7(6),652–657 (2002).
    • 96  Hu X, Karwautz A, Wagner G et al.: No association between a promoter polymorphism in the noradrenaline transporter gene and anorexia nervosa. Psychiatr. Genet.17(4),247–248 (2007).
    • 97  Kurabayashi T, Carey DGP, Morrison NA: The β3-adrenergic receptor gene Trp64Arg mutation is overrepresented in obese women. Diabetes45,1358–1363 (1996).
    • 98  Hinney A, Lentes KU, Rosenkranz K et al.: β 3-adrenergic-receptor allele distributions in children, adolescents and young adults with obesity, underweight or anorexia nervosa. Int. J. Obes. Relat. Metab. Disord.21(3),224–230 (1997).
    • 99  Miyasaka K, Hosoya H, Sekime A et al.: Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population. J. Neural Transm.113(9),1279–1285 (2006).
    • 100  Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM: Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics6,243–250 (1996).
    • 101  Frisch A, Laufer N, Danziger Y et al.: Association of anorexia nervosa with the high activity allele of the COMT gene: a family-based study in Israeli patients. Mol. Psychiatry6(2),243–245 (2001).
    • 102  Mikolajczyk E, Smiarowska M, Grzywacz A, Samochowiec J: Association of eating disorders with catechol-O-methyltransferase gene functional polymorphism. Neuropsychobiology54(1),82–86 (2006).
    • 103  Gabrovsek M, Brecelj-Anderluh M, Bellodi L et al.: Combined family trio and case-control analysis of the COMT Val158Met polymorphism in European patients with anorexia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet.124(1),68–72 (2004).
    • 104  Michaelovsky E, Frisch A, Leor S et al.: Haplotype analysis of the COMT-ARVCF gene region in Israeli anorexia nervosa family trios. Am. J. Med. Genet. B Neuropsychiatr. Genet.139(1),45–50 (2005).
    • 105  Sabol SZ, Hu S, Hamer D: A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet.103,273– 279 (1998).
    • 106  Urwin RE, Bennetts BH, Wilcken B et al.: Gene–gene interaction between the monoamine oxidase A gene and solute carrier family 6 (neurotransmitter transporter, noradrenalin) member 2 gene in anorexia nervosa (restrictive subtype). Eur. J. Hum. Genet.11(12),945–950 (2003).
    • 107  Schwartz MW, Woods FC, Porte D Jr, Seeley RJ, Baskin DG: Central nervous system control of food intake. Nature404,661–671 (2000).
    • 108  Nagakawa T, Tsuchida A, Itakura Y et al.: Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes49,436–444 (2000).
    • 109  Tsuchida A, Nonomura T, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H: Acute effects of brain-derived neurotrophic factor on energy expenditure in obese diabetic mice. Int. J. Obes. Relat. Metab. Disord.25,1286–1293 (2001).
    • 110  Monteleone P, Tortorella A, Martiadis V, Serritella C, Fuschino A, Maj M: Opposite changes in the serum brain-derived neurotrophic factor in anorexia nervosa and obesity. Psychosom. Med.66,744–748 (2004).
    • 111  Monteleone P, Fabrazzo M, Martiadis V, Serritella C, Pannuto M, Maj M: Circulating brain-derived neurotrophic factor is decreased in women with anorexia and bulimia nervosa but not in women with binge-eating disorder: relationships to co-morbid depression, psychopathology and hormonal variables. Psychol. Med.35,897–905 (2005).
    • 112  Nakazato M, Hashimoto K, Yoshimura K, Hashimoto T, Shimizu E, Iyo M: No change between the serum brain-derived neurotrophic factor in female patients with anorexia nervosa before and after partial weight recovery. Prog. Neuro-Psychopharmacol. Biol. Psychiatry30,1117–1121 (2006).
    • 113  Ribasés M, Gratacòs M, Armengol L et al.: Met66 in the brain-derived neurotrophic factor (BDNF) precursor is associated with anorexia nervosa restrictive type. Mol. Psychiatry8(8),745–751 (2003).
    • 114  Ribasés M, Gratacòs M, Fernández-Aranda F et al.: Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum. Mol. Genet.13(12),1205–1212 (2004).
    • 115  Ribasés M, Gratacòs M, Fernández-Aranda F et al.: Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. Eur. J. Hum. Genet.13(4),428–434 (2005).•• Provides the strongest evidence to date of the association between the Met66 variant of the BDNF gene and anorexia nervosa and minimum BMI in a large sample of family trios recruited from seven European countries.
    • 116  Koizumi H, Hashimoto K, Itoh K et al.: Association between the brain-derived neurotrophic factor 196G/A polymorphism and eating disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet.127(1),125–127 (2004).
    • 117  Dmitrzak-Weglarz M, Skibinska M, Slopien A et al.: BDNF Met66 allele is associated with anorexia nervosa in the Polish population. Psychiatr. Genet.17(4),245–246 (2007).
    • 118  Friedel S, Horro FF, Wermter AK et al.: Mutation screen of the brain derived neurotrophic factor gene (BDNF): identification of several genetic variants and association studies in patients with obesity, eating disorders, and attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.132(1),96–99 (2005).
    • 119  Rybakowski F, Dmitrzak-Weglarz M, Szczepankiewicz A et al.: Brain derived neurotrophic factor gene Val66Met and -270C/T polymorphisms and personality traits predisposing to anorexia nervosa. Neuroendocrinol. Lett.28(2),153–158 (2007).
    • 120  Dardennes RM, Zizzari P, Tolle V et al.: Family trios analysis of common polymorphisms in the obestatin/ghrelin, BDNF and AGRP genes in patients with anorexia nervosa: association with subtype, body-mass index, severity and age of onset. Psychoneuroendocrinology32(2),106–113 (2007).
    • 121  Monteleone P, Zanardini R, Tortorella A et al.: The 196G/A (Val66Met) polymorphism of the BDNF gene is significantly associated with binge eating behavior in women with bulimia nervosa or binge eating disorder. Neurosci. Lett.406,133–137 (2006).
    • 122  Kaplan AS, Levitan RD, Yilmaz Z, Davis C, Tharmalingam S, Kennedy JL: A DRD4/BDNF gene–gene interaction associated with maximum BMI in women with bulimia nervosa. Int. J. Eat. Disord.41(1),22–28 (2008).
    • 123  Ribases M, Gratacos M, Badia A et al.: Contribution of NTRK2 to the genetic susceptibility to anorexia nervosa, harm avoidance and minimum body mass index. Mol. Psychiatry10(9),851–860 (2005).
    • 124  Rosenkranz K, Hinney A, Ziegler A et al.: Screening for mutations in the neuropeptide Y Y5 receptor gene in cohorts belonging to different weight extremes. Int. J. Obes. Relat. Metab. Disord.22(2),157–163 (1998).
    • 125  Vink T, Hinney A, van Elburg AA et al.: Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol. Psychiatry6(3),325–328 (2001).
    • 126  Remschmidt H, Hebebrand J: Phenotypes in three pedigrees with autosomal dominant obesity caused by haploinsufficiency mutations in the melanocortin-4 receptor gene. Am. J. Hum. Genet.65,1501–1507 (1999).
    • 127  Mergen M, Mergen H, Ozata M, Oner R, Oner C: A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J. Clin. Endocrinol. Metab.86,3448–3450 (2001).
    • 128  Branson R, Potoczna N, Kral JG, Lentes KU, Hoehe MR, Horber FF: Binge eating as a major phenotype of melanocortin-4 receptor gene mutations. N. Engl. J. Med.348,1096–1103 (2003).
    • 129  Farooqi IS, Keogh JM, Yeo GSH, Lank EJ, Cheetham T, O’Rahilly S: Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med.348,1085–1095 (2003).
    • 130  Herpertz S, Siffert W, Hebebrand J: Binge eating as a phenotype of melanocortin-4 receptor gene mutations. N. Engl. J. Med.349,606–607 (2003).
    • 131  Hebebrand J, Geller F, Dempfle A et al.: Binge eating episodes are not characteristics of carriers of melanocortin-4 receptor gene mutations. Mol. Psychiatry9,796–800 (2004).
    • 132  Lubrano-Berthelier C, Dubern B, Lacorte JM et al.: Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J. Clin. Endocrinol. Metab.91(5),1811–1818 (2004).
    • 133  Tao YX, Segaloff DL: Functional analyses of melanocortin-4 receptor mutations identified from patients with binge eating disorder and non obese or obese subjects. J. Clin. Endocrinol. Metab.90(10),5632–5638 (2005).
    • 134  Tortorella A, Monteleone P, del Giudice EM et al.: Melanocortin-4 receptor molecular scanning and pro-opiomelanocortin R236G variant screening in binge eating disorder. Psychiatr. Genet.15(3),161 (2005).
    • 135  Siegfried Z, Kanyas K, Latzer Y et al.: Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and binging/purging subtypes. Am. J. Med. Genet. B Neuropsychiatr. Genet.125(1),126–130 (2004).
    • 136  Chiang K, Gerber AL, Sipe JC, Cravatt BF: Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. Hum. Mol. Genet.13,1–7 (2004).
    • 137  Monteleone P, Tortorella A, Martiadis V, Di Filippo C, Canestrelli B, Maj M: The cDNA 385C to A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) is associated with overweight/obesity but not with binge eating disorder in overweight/obese women. Psychoneuroendocrinology33,546–550 (2008).
    • 138  Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V: Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. Neuropsychopharmacology30,1216–1221 (2005).
    • 139  Monteleone P, Castaldo E, Maj M: Neuroendocrine dysregulation of food intake in eating disorders. Regul. Pept.149(1–3),39–50 (2008).
    • 140  Cellini E, Nacmias B, Brecelj-Anderluh M et al.: Case-control and combined family trios analysis of three polymorphisms in the ghrelin gene in European patients with anorexia and bulimia nervosa. Psychiatr. Genet.16(2),51–52 (2006).
    • 141  Ando T, Komaki G, Naruo T et al.: Possible role of preproghrelin gene polymorphisms in susceptibility to bulimia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(8),929–934 (2006).
    • 142  Monteleone P, Tortorella A, Castaldo E, Di Filippo C, Maj M: No association of the Arg51Gln and Leu72Met polymorphisms of the ghrelin gene with anorexia nervosa or bulimia nervosa. Neurosci. Lett.398,325–327 (2006).
    • 143  Monteleone P, Tortorella A, Castaldo E, Di Filippo C, Maj M: The Leu72Met polymorphism of the ghrelin gene is significantly associated with binge eating disorder. Psychiatr. Genet.17,13–16 (2007).
    • 144  de Krom M, Hendriks J, Hillebrand J, van Elburg A, Adan R: A polymorphism in the 3´ untranslated region of the CCK gene is associated with anorexia nervosa in Dutch patients. Psychiatr. Genet.16(6),239 (2006).
    • 145  Hinney A, Bornscheuer A, Depenbusch M et al.: No evidence for involvement of the leptin gene in anorexia nervosa, bulimia nervosa, underweight or early onset extreme obesity: identification of two novel mutations in the coding sequence and a novel polymorphism in the leptin gene linked upstream region. Mol. Psychiatry3(6),539–543 (1998).
    • 146  Quinton ND, Meechan DW, Brown K, Eastwood H, Blakemore AI: Single nucleotide polymorphisms in the leptin receptor gene: studies in anorexia nervosa. Psychiatr. Genet.14(4),191–194 (2004).
    • 147  Dolinková M, Krízová J, Lacinová Z et al.: Polymorphisms of adiponectin and resistin genes in patients with obesity and anorexia nervosa. Cas Lek Cesk.145(7),562–566 (2006).
    • 148  Millet L, Vidal H, Andreelli F et al.: Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J. Clin. Invest.100,2665–2670 (1997).
    • 149  Campbell DA, Sundaramurthy D, Gordon D, Markham AF, Pieri LF: Association between a marker in the UCP-2/UCP-3 gene cluster and genetic susceptibility to anorexia nervosa. Mol. Psychiatry4(1),68–70 (1999).
    • 150  Hu X, Murphy F, Karwautz A et al.: Analysis of microsatellite markers at the UCP2/UCP3 locus on chromosome 11q13 in anorexia nervosa. Mol. Psychiatry7(3),276–277 (2002).
    • 151  Ando T, Kodama N, Ishikawa T et al.: Uncoupling protein-2/uncoupling protein-3 gene polymorphism is not associated with anorexia nervosa. Psychiatr. Genet.14(4),215–218 (2004).
    • 152  Plata-Salaman CR: Cytokines and feeding. Int. J. Obes. Relat. Metab. Disord.25(Suppl. 5),S48–S52 (2001).
    • 153  Ando T, Ishikawa T, Kawamura N et al.: Analysis of tumor necrosis factor-α gene promoter polymorphisms in anorexia nervosa. Psychiatr. Genet.11(3),161–164 (2001).
    • 154  Slopien A, Rybakowski F, Dmitrzak-Weglarz M et al.: TNF-α and intPLA2 genes polymorphism in anorexia nervosa. Acta Neuropsychiatr.16,290–294 (2004).
    • 155  Rosenkranz K, Hinney A, Ziegler A et al.: Systematic mutation screening of the estrogen receptor β gene in probands of different weight extremes: identification of several genetic variants. J. Clin. Endocrinol. Metab.83(12),4524–4527 (1998).
    • 156  Eastwood H, Brown KM, Markovic D, Pieri LF: Variation in the ESR1 and ESR2 genes and genetic susceptibility to anorexia nervosa. Mol. Psychiatry7(1),86–89 (2002).
    • 157  Nilsson M, Naessén S, Dahlman I, Lindén Hirschberg A, Gustafsson JA, Dahlman-Wright K: Association of estrogen receptor β gene polymorphisms with bulimic disease in women. Mol. Psychiatry9(1),28–34 (2004).
    • 158  Chandy KG, Fantino E, Wittekindt O et al.: Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol. Psychiatry3,32–37 (1998).
    • 159  Dror V, Shamir E, Ghanshani S et al.: hSKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi jews, expression in human tissue and localization to chromosome 1q21. Mol. Psychiatry4,254–260 (1999).
    • 160  Koronyo-Hamaoui M, Danziger Y, Frisch A et al.: Association between anorexia nervosa and the hsKCa3 gene: a family-based and case control study. Mol. Psychiatry7(1),82–85 (2002).
    • 161  Koronyo-Hamaoui M, Gak E, Stein D et al.: CAG repeat polymorphism within the KCNN3 gene is a significant contributor to susceptibility to anorexia nervosa: a case-control study of female patients and several ethnic groups in the Israeli Jewish population. Am. J. Med. Genet. B Neuropsychiatr. Genet.131(1),76–80 (2004).
    • 162  Tortorella A, Monteleone P, Martiadis V, Perris F, Maj M: The 3111T/C polymorphism of the CLOCK gene confers a predisposition to a lifetime lower body weight in patients with anorexia nervosa and bulimia nervosa: a preliminary study. Am. J. Med. Genet. B Neuropsychiatr. Genet.144,992–995 (2007).
    • 163  Monteleone P, Tortorella A, Docimo L et al.: Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index. Neurosci. Lett.435,30–33 (2008).
    • 164  Zhu AJ, Walsh BT: Pharmacologic treatment of eating disorders. Can. J. Psychiatry47(3),227–234 (2002).
    • 165  Kaye W, Gendall K, Strober M: Serotonin neuronal function and selective serotonin reuptake inhibitor treatment in anorexia and bulimia nervosa. Biol. Psychiatry44(9),825–838 (1998).
    • 166  Walsh TB, Kaplan SA, Attia E et al.: Fluoxetine after weight restoration in anorexia nervosa. JAMA295,2605–2612 (2006).
    • 167  Serretti A, Artioli P: From molecular biology to pharmacogenetics: a review of the literature on antidepressant treatment and suggestions of possible candidate genes. Psychopharmacology174,490–503 (2004).
    • 168  Monteleone P, Santonastaso P, Tortorella A et al.: Serotonin transporter polymorphisms and potential response to SSRIs in bulimia nervosa. Mol. Psychiatry10,716–718 (2005).• First naturalistic study showing that the 5HTTLPR polymorphism may predict the clinical response to selective serotonin reuptake inhibitors (SSRIs) in bulimia nervosa patients, since bulimic individuals carrying the S allele had the worst response to treatment with SSRIs.
    • 169  Erzegovesi S, Riboldi C, Di Bella D et al.: Bulimia nervosa, 5-HTTLPR polymorphism and treatment response to SSRIs. J. Clin. Psychopharmacol.24(6),680–682 (2004).
    • 170  Nakamura M, Ueno S, Sano A, Tanabe H: The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol. Psychiatry5,32–38 (2000).
    • 171  Potoczna N, Branson R, Kral JG et al.: Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J. Gastrointest. Surg.8,971–982 (2004).
    • 172  Bulik CM, Bacanu SA, Klump KL et al.: Selection of eating-disorder phenotypes for linkage analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet.139(1),81–87 (2005).
    • 173  Gottesman II, Gould TD: The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry160(4),636–645 (2003).
    • 174  Halmi KA: Classification, diagnosis and comorbidities of eating disorders. In: Eating Disorders. Maj M, Halmi K, Lopez-Ibor JJ, Sartorius N (Eds). John Wiley & Sons Ltd, Chichester, UK, 1–33 (2003).
    • 175  Moffitt TE, Caspi A, Rutter M: Strategy for investigating interactions between measured genes and measured environments. Arch. Gen. Psychiatry62,473–481 (2005).