We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms

    Meenal Gupta

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    ,
    Chitra Chauhan

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    ,
    Pallav Bhatnagar

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    ,
    Simone Gupta

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    ,
    Sandeep Grover

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    ,
    Prashant K Singh

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    ,
    Meera Purushottam

    National Institute of Mental Health and Neuro Sciences, India

    ,
    Odity Mukherjee

    National Institute of Mental Health and Neuro Sciences, India

    ,
    Sanjeev Jain

    National Institute of Mental Health and Neuro Sciences, India

    ,
    Samir K Brahmachari

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    &
    Ritushree Kukreti

    † Author for correspondence

    Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India.

    Published Online:https://doi.org/10.2217/14622416.10.2.277

    Aim: We investigated 16 polymorphisms from three genes, dopamine receptor D2 (DRD2), catechol-O-methyl transferase (COMT) and brain derived neurotrophic factor (BDNF), which are involved in the dopaminergic pathways, and have been reported to be associated with susceptibility to schizophrenia and response to antipsychotic therapy. Materials & methods: Single-locus association analyses of these polymorphisms were carried out in 254 patients with schizophrenia and 225 controls, all of southern Indian origin. Additionally, multifactor-dimensionality reduction analysis was performed in 422 samples (243 cases and 179 controls) to examine the gene–gene interactions and to identify combinations of multilocus genotypes associated with either high or low risk for the disease. Results: Our results demonstrated initial significant associations of two SNPs for DRD2 (rs11608185, genotype: χ2 = 6.29, p-value = 0.043; rs6275, genotype: χ2 = 8.91, p-value = 0.011), and one SNP in the COMT gene (rs4680, genotype: χ2 = 6.67, p-value = 0.035 and allele: χ2 = 4.75, p-value = 0.029; odds ratio: 1.33, 95% confidence interval: 1.02–1.73), but not after correction for multiple comparisons indicating a weak association of individual markers of DRD2 and COMT with schizophrenia. Multifactor-dimensionality reduction analysis suggested a two locus model (rs6275/DRD2 and rs4680/COMT) as the best model for gene–gene interaction with 90% cross-validation consistency and 42.42% prediction error in predicting disease risk among schizophrenia patients. Conclusion: The present study thus emphasizes the need for multigene interaction studies in complex disorders such as schizophrenia and to understand response to drug treatment, which could lead to a targeted and more effective treatment.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Muller DJ, Luca VD, Kennedy JL: Overview: towards individualized treatment in schizophrenia. Drug Dev. Res.60,75–94 (2003).
    • Verma R, Mukerji M, Grover D et al.: MLC1 gene is associated with schizophrenia and bipolar disorder in southern India. Biol. Psychiatry58,16–22 (2005).
    • Seeman P: Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse1,133–152 (1987).
    • Gupta S, Jain S, Brahmachari SK, Kukreti R: Pharmacogenomics: a path to predictive medicine for schizophrenia. Pharmacogenomics7,31–47 (2006).▪▪ Comprehensive review that presents a network model of the interaction between the neurotransmitter signaling systems.
    • Arinami T, Gao M, Hamaguchi H, Toru M: A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum. Mol. Genet.6,577–582 (1997).
    • Serretti A, Lattuada E, Lorenzi C, Lilli R, Smeraldi E: Dopamine receptor D2 Ser/Cys 311 variant is associated with delusion and disorganization symptomatology in major psychoses. Mol. Psychiatry5,270–274 (2000).
    • Hanninen K, Katila H, Kampman O et al.: Association between the C957T polymorphism of the dopamine D2 receptor gene and schizophrenia. Neurosci. Lett.407,195–198 (2006).
    • Vijayan NN, Bhaskaran S, Koshy LV et al.: Association of dopamine receptor polymorphisms with schizophrenia and antipsychotic response in a South Indian population. Behav. Brain Funct.3,34 (2007).
    • Verga M, Macciardi F, Pedrini S, Cohen S, Smeraldi E: No association of the Ser/Cys311 DRD2 molecular variant with schizophrenia using a classical case control study and the haplotype relative risk. Schizophr. Res.25,117–121 (1997).
    • 10  Hori H, Ohmori O, Shinkai T, Kojima H, Nakamura J: Association analysis between two functional dopamine D2 receptor gene polymorphisms and schizophrenia. Am. J. Med. Genet.105,176–178 (2001).
    • 11  Glatt SJ, Faraone SV, Tsuang MT: DRD2 -141C insertion/deletion polymorphism is not associated with schizophrenia: results of a meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet.128,21–23 (2004).
    • 12  Sanders AR, Duan J, Levinson DF et al.: No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am. J. Psychiatry165,497–506 (2008).
    • 13  Zhang Y, Bertolino A, Fazio L et al.: Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl Acad. Sci. USA104,20552–20557 (2007).
    • 14  Kukreti R, Tripathi S, Bhatnagar P et al.: Association of DRD2 gene variant with schizophrenia. Neurosci. Lett.392,68–71 (2006).
    • 15  Glatt SJ, Jonsson EG: The Cys allele of the DRD2 Ser311Cys polymorphism has a dominant effect on risk for schizophrenia: evidence from fixed- and random-effects meta-analyses. Am. J. Med. Genet. B Neuropsychiatr. Genet.141,149–154 (2006).
    • 16  Tunbridge EM, Harrison PJ, Weinberger DR: Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol. Psychiatry60,141–151 (2006).
    • 17  Owen MJ, Williams NM, O’Donovan MC: The molecular genetics of schizophrenia: new findings promise new insights. Mol. Psychiatry9,14–27 (2004).
    • 18  Williams NM, Owen MJ: Genetic abnormalities of chromosome 22 and the development of psychosis. Curr. Psychiatry Rep.6,176–182 (2004).
    • 19  Shprintzen RJ, Goldberg R, Golding-Kushner KJ, Marion RW: Late-onset psychosis in the velo-cardio-facial syndrome. Am. J. Med. Genet.42,141–142 (1992).
    • 20  Gothelf D, Schaer M, Eliez S: Genes, brain development and psychiatric phenotypes in velo-cardio-facial syndrome. Dev. Disabil. Res. Rev.14,59–68 (2008).
    • 21  Lotta T, Vidgren J, Tilgmann C et al.: Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry34,4202–4210 (1995).
    • 22  Chen J, Lipska BK, Halim N et al.: Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet.75,807–821 (2004).
    • 23  Palmatier MA, Kang AM, Kidd KK: Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol. Psychiatry46,557–567 (1999).▪ First global survey of frequency of COMT polymorphism (rs4680) undertaken in 30 diverse populations.
    • 24  Chen X, Wang X, O’Neill AF, Walsh D, Kendler KS: Variants in the catechol-O-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol. Psychiatry9,962–967 (2004).
    • 25  Handoko HY, Nyholt DR, Hayward NK et al.: Separate and interacting effects within the catechol-O-methyltransferase (COMT) are associated with schizophrenia. Mol. Psychiatry10,589–597 (2005).
    • 26  Abdolmaleky HM, Cheng KH, Faraone SV et al.: Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet.15,3132–3145 (2006).
    • 27  Pelayo-Terán JM, Crespo-Facorro B, Carrasco-Marín E: Catechol-O-methyltransferase Val158Met polymorphism and clinical characteristics in first episode non-affective psychosis. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B,550–556 (2008).
    • 28  Semwal P, Prasad S, Varma PG, Bhagwat AM, Deshpande SN, Thelma BK: Candidate gene polymorphisms among North Indians and their association with schizophrenia in a case–control study. J. Genet.81,65–71 (2002).
    • 29  Glatt SJ, Faraone SV, Tsuang MT: Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case–control and family-based studies. Am. J. Psychiatry160,469–476 (2003).
    • 30  Fan JB, Zhang CS, Gu NF et al.: Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol. Psychiatry57,139–144 (2005).
    • 31  Munafo MR, Bowes L, Clark TG, Flint J: Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case–control studies. Mol. Psychiatry10,765–770 (2005).
    • 32  Nunokawa A, Watanabe Y, Muratake T, Kaneko N, Koizumi M, Someya T: No associations exist between five functional polymorphisms in the catechol-O-methyltransferase gene and schizophrenia in a Japanese population. Neurosci. Res.58,291–296 (2007).
    • 33  Shifman S, Bronstein M, Sternfeld M et al.: A highly significant association between a COMT haplotype and schizophrenia. Am. J. Hum. Genet.71,1296–1302 (2002).▪ A highly significant association of COMT haplotype was reported in a large population.
    • 34  Lee SG, Joo Y, Kim B et al.: Association of Ala72Ser polymorphism with COMT enzyme activity and the risk of schizophrenia in Koreans. Hum. Genet.116,319–328 (2005).
    • 35  Meyer-Lindenberg A, Nichols T, Callicott JH et al.: Impact of complex genetic variation in COMT on human brain function. Mol. Psychiatry11,867–877 (2006).
    • 36  Bray NJ, Buckland PR, Williams NM et al.: A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am. J. Hum. Genet.73,152–161 (2003).▪ The haplotype implicated in schizophrenia susceptibility was found to be associated with lower expression of COMT mRNA in human brain.
    • 37  Angelucci F, Brene S, Mathe AA: BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry10,345–352 (2005).
    • 38  Galderisi S, Maj M, Kirkpatrick B et al.: COMT Val(158)Met and BDNF C(270)T polymorphisms in schizophrenia: a case–control study. Schizophr. Res.73,27–30 (2005).
    • 39  Dluzen DE, Gao X, Story GM, Anderson LI, Kucera J, Walro JM: Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice. Exp. Neurol.170,121–128 (2001).
    • 40  Durany N, Michel T, Zochling R et al.: Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr. Res.52,79–86 (2001).
    • 41  Egan MF, Weinberger DR, Lu B: Schizophrenia, III: brain-derived neurotropic factor and genetic risk. Am. J. Psychiatry160,1242 (2003).
    • 42  Neves-Pereira M, Cheung JK, Pasdar A et al.: BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol. Psychiatry10,208–212 (2005).
    • 43  Watanabe Y, Muratake T, Kaneko N, Nunokawa A, Someya T: No association between the brain-derived neurotrophic factor gene and schizophrenia in a Japanese population. Schizophr. Res.84,29–35 (2006).
    • 44  Naoe Y, Shinkai T, Hori H et al.: No association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and schizophrenia in Asian populations: Evidence from a case–control study and meta-analysis. Neurosci. Lett.415,108–112 (2007).
    • 45  Cloninger CR: Multilocus genetics of schizophrenia. Curr. Opin. Psychiatry10,5–10 (1997).
    • 46  Moore JH, Williams SM: New strategies for identifying gene–gene interactions in hypertension. Ann. Med.34,88–95 (2002).▪▪ A nonparametric and genetic model-free approach was adopted to develop a software for identifying gene–gene interactions.
    • 47  Ritchie MD, Hahn LW, Roodi N et al.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet.69,138–147 (2001).▪ First report which demonstrated a four-locus interaction associated with a complex multifactorial disease in absence of any statistically significant independent main effects.
    • 48  Cho YM, Ritchie MD, Moore JH et al.: Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia47,549–554 (2004).
    • 49  Xu J, Lowey J, Wiklund F et al.: The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol. Biomarkers Prev.14,2563–2568 (2005).
    • 50  Motsinger AA, Brassat D, Caillier SJ et al.: Complex gene–gene interactions in multiple sclerosis: a multifactorial approach reveals associations with inflammatory genes. Neurogenetics8,11–20 (2007).
    • 51  Wing JK, Babor T, Brugha T et al.: SCAN. Schedules for clinical assessment in neuropsychiatry. Arch. Gen. Psychiatry47,589–593 (1990).
    • 52  McGuffin P, Farmer A, Harvey I: A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch. Gen. Psychiatry48,764–770 (1991).
    • 53  Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res.16,1215 (1988).
    • 54  Nyholt DR: A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet.74,765–769 (2004).
    • 55  Gordon D, Finch SJ, Nothnagel M, Ott J: Power and sample size calculations for case–control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum. Hered.54,22–33 (2002).
    • 56  Gordon D, Levenstien MA, Finch SJ, Ott J: Errors and linkage disequilibrium interact multiplicatively when computing sample sizes for genetic case–control association studies. Pac. Symp. Biocomput.490–501 (2003).
    • 57  Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics21,263–265 (2005).
    • 58  Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics19,376–382 (2003).
    • 59  Kim SH, Jeong HH, Cho BY et al.: Association of four-locus gene interaction with aspirin-intolerant asthma in Korean asthmatics. J. Clin. Immunol.28,336–342 (2008).
    • 60  Iida K, Akashu H: A test for translational selection at ‘silent’ sites in the human genome: base composition comparisons in alternatively spliced genes. Gene261,93–105 (2000).
    • 61  Mo GH, Liao DL, Lai IC et al.: Support for an association of the C939T polymorphism in the human DRD2 gene with tardive dyskinesia in schizophrenia. Schizophr. Res.97(1–3),302–304 (2007).
    • 62  Tanaka Y, Sasaki M, Shiina H et al.: Catechol-O-methyltransferase gene polymorphisms in benign prostatic hyperplasia and sporadic prostate cancer. Cancer Epidemiol. Biomarkers Prev.15,238–244 (2006).
    • 63  Rothe C, Koszycki D, Bradwejn J et al.: Association of the Val158Met catechol O-methyltransferase genetic polymorphism with panic disorder. Neuropsychopharmacology31,2237–2242 (2006).
    • 64  Voutilainen S, Tuomainen TP, Korhonen M et al.: Functional COMT Val158Met polymorphism, risk of acute coronary events and serum homocysteine: the kuopio ischaemic heart disease risk factor study. PLoS ONE2,E181 (2007).
    • 65  Pooley EC, Fineberg N, Harrison PJ: The met(158) allele of catechol-O-methyltransferase (COMT) is associated with obsessive-compulsive disorder in men: case–control study and meta-analysis. Mol. Psychiatry12,556–561 (2007).
    • 66  Shifman S, Bronstein M, Sternfeld M et al.: COMT: a common susceptibility gene in bipolar disorder and schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.128,61–64 (2004).
    • 67  Egan MF, Goldberg TE, Kolachana BS et al.: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. USA98,6917–6922 (2001).
    • 68  Woodward ND, Jayathilake K, Meltzer HY: COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr. Res.90,86–96 (2007).
    • 69  Ohnishi T, Hashimoto R, Mori T et al.: The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain129,399–410 (2006).
    • 70  Gupta M, Bhatnagar P, Grover S et al.: Association studies of catechol-O-methyl transferase (COMT) gene with schizophrenia and response to antipsychotic treatment. Pharmacogenomics (2009) (In press).
    • 71  Numata S, Ueno S, Iga J et al.: Interaction between catechol-O-methyltransferase (COMT) Val108/158Met and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in age at onset and clinical symptoms in schizophrenia. J. Neural Transm.114,255–259 (2007).
    • 72  Xu H, Kellendonk CB, Simpson EH et al.: DRD2 C957T polymorphism interacts with the COMT Val158Met polymorphism in human working memory ability. Schizophr. Res.90,104–107 (2007).
    • 73  Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D: Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene–gene interaction on working memory functioning. Eur. J. Hum. Genet.16,1075–1082 (2008).
    • 101  MRC Social, Genetic and Developmental Policy Centre: resources for the OPCRIT package http://sgdp.iop.kcl.ac.uk/opcrit
    • 102  dbSNP www.ncbi.nlm.nih.gov/projects/SNP/
    • 103  Pupasuite http://pupasuite.bioinfo.cipf.es/
    • 104  Power for Association With Errors (PAWE) http://linkage.rockefeller.edu/pawe/
    • 105  International HapMap Project Affiliations www.hapmap.org/

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Muller DJ, Luca VD, Kennedy JL: Overview: towards individualized treatment in schizophrenia. Drug Dev. Res.60,75–94 (2003).
    • Verma R, Mukerji M, Grover D et al.: MLC1 gene is associated with schizophrenia and bipolar disorder in southern India. Biol. Psychiatry58,16–22 (2005).
    • Seeman P: Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse1,133–152 (1987).
    • Gupta S, Jain S, Brahmachari SK, Kukreti R: Pharmacogenomics: a path to predictive medicine for schizophrenia. Pharmacogenomics7,31–47 (2006).▪▪ Comprehensive review that presents a network model of the interaction between the neurotransmitter signaling systems.
    • Arinami T, Gao M, Hamaguchi H, Toru M: A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum. Mol. Genet.6,577–582 (1997).
    • Serretti A, Lattuada E, Lorenzi C, Lilli R, Smeraldi E: Dopamine receptor D2 Ser/Cys 311 variant is associated with delusion and disorganization symptomatology in major psychoses. Mol. Psychiatry5,270–274 (2000).
    • Hanninen K, Katila H, Kampman O et al.: Association between the C957T polymorphism of the dopamine D2 receptor gene and schizophrenia. Neurosci. Lett.407,195–198 (2006).
    • Vijayan NN, Bhaskaran S, Koshy LV et al.: Association of dopamine receptor polymorphisms with schizophrenia and antipsychotic response in a South Indian population. Behav. Brain Funct.3,34 (2007).
    • Verga M, Macciardi F, Pedrini S, Cohen S, Smeraldi E: No association of the Ser/Cys311 DRD2 molecular variant with schizophrenia using a classical case control study and the haplotype relative risk. Schizophr. Res.25,117–121 (1997).
    • 10  Hori H, Ohmori O, Shinkai T, Kojima H, Nakamura J: Association analysis between two functional dopamine D2 receptor gene polymorphisms and schizophrenia. Am. J. Med. Genet.105,176–178 (2001).
    • 11  Glatt SJ, Faraone SV, Tsuang MT: DRD2 -141C insertion/deletion polymorphism is not associated with schizophrenia: results of a meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet.128,21–23 (2004).
    • 12  Sanders AR, Duan J, Levinson DF et al.: No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am. J. Psychiatry165,497–506 (2008).
    • 13  Zhang Y, Bertolino A, Fazio L et al.: Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl Acad. Sci. USA104,20552–20557 (2007).
    • 14  Kukreti R, Tripathi S, Bhatnagar P et al.: Association of DRD2 gene variant with schizophrenia. Neurosci. Lett.392,68–71 (2006).
    • 15  Glatt SJ, Jonsson EG: The Cys allele of the DRD2 Ser311Cys polymorphism has a dominant effect on risk for schizophrenia: evidence from fixed- and random-effects meta-analyses. Am. J. Med. Genet. B Neuropsychiatr. Genet.141,149–154 (2006).
    • 16  Tunbridge EM, Harrison PJ, Weinberger DR: Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol. Psychiatry60,141–151 (2006).
    • 17  Owen MJ, Williams NM, O’Donovan MC: The molecular genetics of schizophrenia: new findings promise new insights. Mol. Psychiatry9,14–27 (2004).
    • 18  Williams NM, Owen MJ: Genetic abnormalities of chromosome 22 and the development of psychosis. Curr. Psychiatry Rep.6,176–182 (2004).
    • 19  Shprintzen RJ, Goldberg R, Golding-Kushner KJ, Marion RW: Late-onset psychosis in the velo-cardio-facial syndrome. Am. J. Med. Genet.42,141–142 (1992).
    • 20  Gothelf D, Schaer M, Eliez S: Genes, brain development and psychiatric phenotypes in velo-cardio-facial syndrome. Dev. Disabil. Res. Rev.14,59–68 (2008).
    • 21  Lotta T, Vidgren J, Tilgmann C et al.: Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry34,4202–4210 (1995).
    • 22  Chen J, Lipska BK, Halim N et al.: Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet.75,807–821 (2004).
    • 23  Palmatier MA, Kang AM, Kidd KK: Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol. Psychiatry46,557–567 (1999).▪ First global survey of frequency of COMT polymorphism (rs4680) undertaken in 30 diverse populations.
    • 24  Chen X, Wang X, O’Neill AF, Walsh D, Kendler KS: Variants in the catechol-O-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol. Psychiatry9,962–967 (2004).
    • 25  Handoko HY, Nyholt DR, Hayward NK et al.: Separate and interacting effects within the catechol-O-methyltransferase (COMT) are associated with schizophrenia. Mol. Psychiatry10,589–597 (2005).
    • 26  Abdolmaleky HM, Cheng KH, Faraone SV et al.: Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet.15,3132–3145 (2006).
    • 27  Pelayo-Terán JM, Crespo-Facorro B, Carrasco-Marín E: Catechol-O-methyltransferase Val158Met polymorphism and clinical characteristics in first episode non-affective psychosis. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B,550–556 (2008).
    • 28  Semwal P, Prasad S, Varma PG, Bhagwat AM, Deshpande SN, Thelma BK: Candidate gene polymorphisms among North Indians and their association with schizophrenia in a case–control study. J. Genet.81,65–71 (2002).
    • 29  Glatt SJ, Faraone SV, Tsuang MT: Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case–control and family-based studies. Am. J. Psychiatry160,469–476 (2003).
    • 30  Fan JB, Zhang CS, Gu NF et al.: Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol. Psychiatry57,139–144 (2005).
    • 31  Munafo MR, Bowes L, Clark TG, Flint J: Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case–control studies. Mol. Psychiatry10,765–770 (2005).
    • 32  Nunokawa A, Watanabe Y, Muratake T, Kaneko N, Koizumi M, Someya T: No associations exist between five functional polymorphisms in the catechol-O-methyltransferase gene and schizophrenia in a Japanese population. Neurosci. Res.58,291–296 (2007).
    • 33  Shifman S, Bronstein M, Sternfeld M et al.: A highly significant association between a COMT haplotype and schizophrenia. Am. J. Hum. Genet.71,1296–1302 (2002).▪ A highly significant association of COMT haplotype was reported in a large population.
    • 34  Lee SG, Joo Y, Kim B et al.: Association of Ala72Ser polymorphism with COMT enzyme activity and the risk of schizophrenia in Koreans. Hum. Genet.116,319–328 (2005).
    • 35  Meyer-Lindenberg A, Nichols T, Callicott JH et al.: Impact of complex genetic variation in COMT on human brain function. Mol. Psychiatry11,867–877 (2006).
    • 36  Bray NJ, Buckland PR, Williams NM et al.: A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am. J. Hum. Genet.73,152–161 (2003).▪ The haplotype implicated in schizophrenia susceptibility was found to be associated with lower expression of COMT mRNA in human brain.
    • 37  Angelucci F, Brene S, Mathe AA: BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry10,345–352 (2005).
    • 38  Galderisi S, Maj M, Kirkpatrick B et al.: COMT Val(158)Met and BDNF C(270)T polymorphisms in schizophrenia: a case–control study. Schizophr. Res.73,27–30 (2005).
    • 39  Dluzen DE, Gao X, Story GM, Anderson LI, Kucera J, Walro JM: Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice. Exp. Neurol.170,121–128 (2001).
    • 40  Durany N, Michel T, Zochling R et al.: Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr. Res.52,79–86 (2001).
    • 41  Egan MF, Weinberger DR, Lu B: Schizophrenia, III: brain-derived neurotropic factor and genetic risk. Am. J. Psychiatry160,1242 (2003).
    • 42  Neves-Pereira M, Cheung JK, Pasdar A et al.: BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol. Psychiatry10,208–212 (2005).
    • 43  Watanabe Y, Muratake T, Kaneko N, Nunokawa A, Someya T: No association between the brain-derived neurotrophic factor gene and schizophrenia in a Japanese population. Schizophr. Res.84,29–35 (2006).
    • 44  Naoe Y, Shinkai T, Hori H et al.: No association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and schizophrenia in Asian populations: Evidence from a case–control study and meta-analysis. Neurosci. Lett.415,108–112 (2007).
    • 45  Cloninger CR: Multilocus genetics of schizophrenia. Curr. Opin. Psychiatry10,5–10 (1997).
    • 46  Moore JH, Williams SM: New strategies for identifying gene–gene interactions in hypertension. Ann. Med.34,88–95 (2002).▪▪ A nonparametric and genetic model-free approach was adopted to develop a software for identifying gene–gene interactions.
    • 47  Ritchie MD, Hahn LW, Roodi N et al.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet.69,138–147 (2001).▪ First report which demonstrated a four-locus interaction associated with a complex multifactorial disease in absence of any statistically significant independent main effects.
    • 48  Cho YM, Ritchie MD, Moore JH et al.: Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia47,549–554 (2004).
    • 49  Xu J, Lowey J, Wiklund F et al.: The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol. Biomarkers Prev.14,2563–2568 (2005).
    • 50  Motsinger AA, Brassat D, Caillier SJ et al.: Complex gene–gene interactions in multiple sclerosis: a multifactorial approach reveals associations with inflammatory genes. Neurogenetics8,11–20 (2007).
    • 51  Wing JK, Babor T, Brugha T et al.: SCAN. Schedules for clinical assessment in neuropsychiatry. Arch. Gen. Psychiatry47,589–593 (1990).
    • 52  McGuffin P, Farmer A, Harvey I: A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch. Gen. Psychiatry48,764–770 (1991).
    • 53  Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res.16,1215 (1988).
    • 54  Nyholt DR: A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet.74,765–769 (2004).
    • 55  Gordon D, Finch SJ, Nothnagel M, Ott J: Power and sample size calculations for case–control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum. Hered.54,22–33 (2002).
    • 56  Gordon D, Levenstien MA, Finch SJ, Ott J: Errors and linkage disequilibrium interact multiplicatively when computing sample sizes for genetic case–control association studies. Pac. Symp. Biocomput.490–501 (2003).
    • 57  Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics21,263–265 (2005).
    • 58  Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics19,376–382 (2003).
    • 59  Kim SH, Jeong HH, Cho BY et al.: Association of four-locus gene interaction with aspirin-intolerant asthma in Korean asthmatics. J. Clin. Immunol.28,336–342 (2008).
    • 60  Iida K, Akashu H: A test for translational selection at ‘silent’ sites in the human genome: base composition comparisons in alternatively spliced genes. Gene261,93–105 (2000).
    • 61  Mo GH, Liao DL, Lai IC et al.: Support for an association of the C939T polymorphism in the human DRD2 gene with tardive dyskinesia in schizophrenia. Schizophr. Res.97(1–3),302–304 (2007).
    • 62  Tanaka Y, Sasaki M, Shiina H et al.: Catechol-O-methyltransferase gene polymorphisms in benign prostatic hyperplasia and sporadic prostate cancer. Cancer Epidemiol. Biomarkers Prev.15,238–244 (2006).
    • 63  Rothe C, Koszycki D, Bradwejn J et al.: Association of the Val158Met catechol O-methyltransferase genetic polymorphism with panic disorder. Neuropsychopharmacology31,2237–2242 (2006).
    • 64  Voutilainen S, Tuomainen TP, Korhonen M et al.: Functional COMT Val158Met polymorphism, risk of acute coronary events and serum homocysteine: the kuopio ischaemic heart disease risk factor study. PLoS ONE2,E181 (2007).
    • 65  Pooley EC, Fineberg N, Harrison PJ: The met(158) allele of catechol-O-methyltransferase (COMT) is associated with obsessive-compulsive disorder in men: case–control study and meta-analysis. Mol. Psychiatry12,556–561 (2007).
    • 66  Shifman S, Bronstein M, Sternfeld M et al.: COMT: a common susceptibility gene in bipolar disorder and schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.128,61–64 (2004).
    • 67  Egan MF, Goldberg TE, Kolachana BS et al.: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. USA98,6917–6922 (2001).
    • 68  Woodward ND, Jayathilake K, Meltzer HY: COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr. Res.90,86–96 (2007).
    • 69  Ohnishi T, Hashimoto R, Mori T et al.: The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain129,399–410 (2006).
    • 70  Gupta M, Bhatnagar P, Grover S et al.: Association studies of catechol-O-methyl transferase (COMT) gene with schizophrenia and response to antipsychotic treatment. Pharmacogenomics (2009) (In press).
    • 71  Numata S, Ueno S, Iga J et al.: Interaction between catechol-O-methyltransferase (COMT) Val108/158Met and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in age at onset and clinical symptoms in schizophrenia. J. Neural Transm.114,255–259 (2007).
    • 72  Xu H, Kellendonk CB, Simpson EH et al.: DRD2 C957T polymorphism interacts with the COMT Val158Met polymorphism in human working memory ability. Schizophr. Res.90,104–107 (2007).
    • 73  Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D: Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene–gene interaction on working memory functioning. Eur. J. Hum. Genet.16,1075–1082 (2008).
    • 101  MRC Social, Genetic and Developmental Policy Centre: resources for the OPCRIT package http://sgdp.iop.kcl.ac.uk/opcrit
    • 102  dbSNP www.ncbi.nlm.nih.gov/projects/SNP/
    • 103  Pupasuite http://pupasuite.bioinfo.cipf.es/
    • 104  Power for Association With Errors (PAWE) http://linkage.rockefeller.edu/pawe/
    • 105  International HapMap Project Affiliations www.hapmap.org/