We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Re-epithelialization: a key element in tracheal tissue engineering

    Hengyi Zhang

    Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China

    ,
    Wei Fu

    *Author for correspondence:

    E-mail Address: fuweizhulu@163.com

    Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China

    Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China

    &
    Zhiwei Xu

    **Author for correspondence:

    E-mail Address: xuzhiwei@scmc.com.cn

    Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China

    Published Online:https://doi.org/10.2217/rme.15.68

    Trachea-tissue engineering is a thriving new field in regenerative medicine that is reaching maturity and yielding numerous promising results. In view of the crucial role that the epithelium plays in the trachea, re-epithelialization of tracheal substitutes has gradually emerged as the focus of studies in tissue-engineered trachea. Recent progress in our understanding of stem cell biology, growth factor interactions and transplantation immunobiology offer the prospect of optimization of a tissue-engineered tracheal epithelium. In addition, advances in cell culture technology and successful applications of clinical transplantation are opening up new avenues for the construction of a tissue-engineered tracheal epithelium. Therefore, this review summarizes current advances, unresolved obstacles and future directions in the reconstruction of a tissue-engineered tracheal epithelium.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Grillo HC. Tracheal replacement: a critical review. Ann. Thorac. Surg. 73(6), 1995–2004 (2002).
    • 2 Hasaniya N, Elzein CF, Mara S, Barth MJ, Ilbawi M. Alternative approach to the surgical management of congenital tracheal stenosis. Ann. Thorac. Surg. 82(6), 2305–2307 (2006).
    • 3 Hazekamp MG, Koolbergen DR, Kersten J, Peper J, De Mol B, Konig-Jung A. Pediatric tracheal reconstruction with pericardial patch and strips of autotogous cartilage. Eur. J. Cardiothorac. Surg. 36(2), 344–351 (2009).
    • 4 Martinod E, Seguin A, Pfeuty K et al. Long-term evaluation of the replacement of the trachea with an autologous aortic graft. Ann. Thorac. Surg. 75(5), 1572–1578 (2003).
    • 5 Wurtz A, Porte H, Conti M et al. Tracheal replacement with aortic allografts. N. Engl. J. Med. 355(18), 1938–1940 (2006).
    • 6 Wurtz A, Porte H, Conti M et al. Surgical technique and results of tracheal and carinal replacement with aortic allografts for salivary gland-type carcinoma. J. Thorac. Cardiovasc. Surg. 140(2), 387–393.e382 (2010).
    • 7 Zeitels SM, Wain JC, Barbu AM, Bryson PC, Burns JA. Aortic homograft reconstruction of partial laryngectomy defects: a new technique. Ann. Otol. Rhinol. Laryngol. 121(5), 301–306 (2012).
    • 8 Belsey R. Resection and reconstruction of the intrathoracic trachea. Br. J. Surg. 38(150), 200–205 (1950).
    • 9 Neville WE, Bolanowski PJP, Kotia GG. Clinical-experience with the silicone tracheal prosthesis. J. Thorac. Cardiovasc. Surg. 99(4), 604–613 (1990).
    • 10 Grillo HC. The history of tracheal surgery. Chest Surg. Clin. N. Am. 13(2), 175–189 (2003).
    • 11 Chopra DP, Kern RC, Mathieu PA, Jacobs JR. Successful in vitro growth of human respiratory epithelium on a tracheal prosthesis. Laryngoscope 102(5), 528–531 (1992).
    • 12 Sachs LA, Finkbeiner WE, Widdicombe JH. Effects of media on differentiation of cultured human tracheal epithelium. In vitro cellular & developmental biology. Animal 39(1–2), 56–62 (2003).
    • 13 Widdicombe JH, Sachs LA, Morrow JL, Finkbeiner WE. Expansion of cultures of human tracheal epithelium with maintenance of differentiated structure and function. BioTechniques 39(2), 249–255 (2005).
    • 14 Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 262(6 Pt 1), L713–L724 (1992).
    • 15 Tan Q, Steiner R, Hoerstrup SP, Weder W. Tissue-engineered trachea: history, problems and the future. Eur. J. Cardiothorac. Surg. 30(5), 782–786 (2006).• Previous review of tissue-engineered trachea.
    • 16 Walles T. Tracheobronchial bio-engineering: biotechnology fulfilling unmet medical needs. Adv. Drug Deliv. Rev. 63(4–5), 367–374 (2011).
    • 17 Soleas JP, Paz A, Marcus P, Mcguigan A, Waddell TK. Engineering airway epithelium. J. Biomed. Biotechnol. 2012, 982971 (2012).• Precious and recent systematic review of tissue-engineered tracheal epithelium.
    • 18 Ott LM, Weatherly RA, Detamore MS. Overview of tracheal tissue engineering: clinical need drives the laboratory approach. Ann. Biomed. Eng. 39(8), 2091–2113 (2011).• Precious and recent systematic review of tracheal tissue engineering.
    • 19 Hamilton N, Bullock AJ, Macneil S, Janes SM, Birchall M. Tissue Eng. airway mucosa: a systematic review. Laryngoscope 124(4), 961–968 (2014).•• Precious and latest expert opinion review of tissue-engineered tracheal epithelium.
    • 20 Rich JT, Gullane PJ. Current concepts in tracheal reconstruction. Curr. Opin. Otolaryngol. Head Neck Surg. 20(4), 246–253 (2012).
    • 21 Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. The airway epithelium: more than just a structural barrier. Ther. Adv. Respir. Dis. 5(4), 255–273 (2011).
    • 22 Harrington H, Cato P, Salazar F et al. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol. Pharm. 11(7), 2082–2091 (2014).
    • 23 Knight DA, Holgate ST. The airway epithelium: structural and functional properties in health and disease. Respirology 8(4), 432–446 (2003).
    • 24 Thornton DJ, Rousseau K, Mcguckin MA. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70, 459–486 (2008).
    • 25 Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest 135(2), 505–512 (2009).
    • 26 Joo NS, Wu JV, Krouse ME, Saenz Y, Wine JJ. Optical method for quantifying rates of mucus secretion from single submucosal glands. Am. J. Physiol. Lung Cell. Mol. Physiol. 281(2), L458–L468 (2001).
    • 27 Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Models Mech. 3(9–10), 545–556 (2010).
    • 28 Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am. J. Physiol. Lung Cell. Mol. Physiol. 286(4), L643–L649 (2004).
    • 29 Krasteva G, Canning BJ, Hartmann P et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc. Natl Acad. Sci. USA 108(23), 9478–9483 (2011).
    • 30 Saunders CJ, Reynolds SD, Finger TE. Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am. J. Respir. Cell Mol. Biol. 49(2), 190–196 (2013).
    • 31 Rawlins EL, Hogan BL. Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133(13), 2455–2465 (2006).
    • 32 Rawlins EL, Hogan BL. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 295(1), L231–L234 (2008).
    • 33 Snyder JC, Teisanu RM, Stripp BR. Endogenous lung stem cells and contribution to disease. J. Pathol. 217(2), 254–264 (2009).
    • 34 Heguy A, Harvey BG, Leopold PL, Dolgalev I, Raman T, Crystal RG. Responses of the human airway epithelium transcriptome to in vivo injury. Physiol. Genomics 29(2), 139–148 (2007).
    • 35 Shimizu T, Nishihara M, Kawaguchi S, Sakakura Y. Expression of phenotypic markers during regeneration of rat tracheal epithelium following mechanical injury. Am. J. Respir. Cell Mol. Biol. 11(1), 85–94 (1994).
    • 36 Stripp BR, Reynolds SD. Maintenance and repair of the bronchiolar epithelium. Proc. Am. Thorac. Soc. 5(3), 328–333 (2008).
    • 37 Tesfaigzi Y. Processes involved in the repair of injured airway epithelia. Arch. Immunol. Ther. Exp. 51(5), 283–288 (2003).
    • 38 Coraux C, Roux J, Jolly T, Birembaut P. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration. Proc. Am. Thorac. Soc. 5(6), 689–694 (2008).
    • 39 Sacco O, Silvestri M, Sabatini F, Sale R, Defilippi AC, Rossi GA. Epithelial cells and fibroblasts: structural repair and remodelling in the airways. Paediatr. Respir. Rev. 5(Suppl. A), S35–S40 (2004).
    • 40 Park KS, Wells JM, Zorn AM et al. Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 34(2), 151–157 (2006).
    • 41 Folli C, Descalzi D, Scordamaglia F, Riccio AM, Gamalero C, Canonica GW. New insights into airway remodelling in asthma and its possible modulation. Curr. Opin. Allergy Clin. Immunol. 8(5), 367–375 (2008).
    • 42 Nauta A, Gurtner G, Longaker MT. Wound healing and regenerative strategies. Oral Dis. 17(6), 541–549 (2011).
    • 43 Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl. 1), Si32–Si34 (1999).
    • 44 Asnaghi A, Macchiarini P, Mantero S. Tissue engineering toward organ replacement: a promising approach in airway transplant. Int. J. Artific. Organs 32(11), 763–768 (2009).
    • 45 Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet 379(9819), 943–952 (2012).
    • 46 Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci. Transl. Med. 4(160), 160rv112 (2012).
    • 47 Fishman JM, Wiles K, Lowdell MW et al. Airway tissue engineering: an update. Expert Opin. Biol. Ther. 14(10), 1477–1491 (2014).
    • 48 You Y, Richer EJ, Huang T, Brody SL. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am. J. Physiol. Lung Cell. Mol. Physiol. 283(6), L1315–L1321 (2002).
    • 49 Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH. Well-differentiated human airway epithelial cell cultures. Methods Mol. Med. 107, 183–206 (2005).
    • 50 Dvorak A, Tilley AE, Shaykhiev R, Wang R, Crystal RG. Do airway epithelium air–liquid cultures represent the in vivo airway epithelium transcriptome? Am. J. Respir. Cell Mol. Biol. 44(4), 465–473 (2011).
    • 51 Kojima K, Bonassar LJ, Roy AK, Mizuno H, Cortiella J, Vacanti CA. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. FASEB J. 17(8), 823–828 (2003).
    • 52 Mohd Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah SH, Ruszymah BH. Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model. Cells Tissues Organs 192(5), 292–302 (2010).
    • 53 Kim JH, Kong WH, Kim JG, Kim HJ, Seo SW. Possibility of skin epithelial cell transdifferentiation in tracheal reconstruction. Artific. Organs 35(2), 122–130 (2011).
    • 54 Kim J, Suh SW, Shin JY, Kim JH, Choi YS, Kim H. Replacement of a tracheal defect with a tissue-engineered prosthesis: early results from animal experiments. J. Thorac. Cardiovasc. Surg. 128(1), 124–129 (2004).
    • 55 Nomoto Y, Suzuki T, Tada Y et al. Tissue engineering for regeneration of the tracheal epithelium. Ann. Otol. Rhinol. Laryngol. 115(7), 501–506 (2006).
    • 56 Okano W, Nomoto Y, Wada I et al. Bioengineered trachea with fibroblasts in a rabbit model. Ann. Otol. Rhinol. Laryngol. 118(11), 796–804 (2009).•• Important study demonstrating the effect of fibroblasts on tracheal epithelial regeneration.
    • 57 Nomoto Y, Kobayashi K, Tada Y, Wada I, Nakamura T, Omori K. Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea. Ann. Otol. Rhinol. Laryngol. 117(1), 59–64 (2008).
    • 58 Nakamura T, Sato T, Araki M et al. In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea. J. Thorac. Cardiovasc. Surg. 138(4), 811–819 (2009).
    • 59 Han Y, Lan N, Pang C, Tong X. Bone marrow-derived mesenchymal stem cells enhance cryopreserved trachea allograft epithelium regeneration and vascular endothelial growth factor expression. Transplantation 92(6), 620–626 (2011).
    • 60 Kobayashi K, Suzuki T, Nomoto Y et al. A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Biomaterials 31(18), 4855–4863 (2010).
    • 61 Suzuki T, Kobayashi K, Tada Y et al. Regeneration of the trachea using a bioengineered scaffold with adipose-derived stem cells. Ann. Otol. Rhinol. Laryngol. 117(6), 453–463 (2008).
    • 62 Turner CG, Klein JD, Steigman SA et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J. Pediatr. Surg. 46(1), 57–61 (2011).
    • 63 Zavala DC, Rossi NP, Bedell GN. Bronchial brush biopsy. A valuable diagnostic technique in the presurgical evaluation of indeterminate lung densities. Ann. Thorac. Surg. 13(6), 519–528 (1972).
    • 64 Karp PH, Moninger TO, Weber SP et al. An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol. Biol. 188, 115–137 (2002).•• Previous methods for establishing primary cultures of human airway epithelia in vitro.
    • 65 Berg M, Ejnell H, Kovacs A et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report. Tissue Eng. A 20(1–2), 389–397 (2014).
    • 66 Zhao X, Yu F, Li C et al. The use of nasal epithelial stem/progenitor cells to produce functioning ciliated cells in vitro. Am. J. Rhinol. Allergy 26(5), 345–350 (2012).
    • 67 Ruszymah BH, Izham BA, Heikal MY, Khor SF, Fauzi MB, Aminuddin BS. Human respiratory epithelial cells from nasal turbinate expressed stem cell genes even after serial passaging. Med. J. Malaysia 66(5), 440–442 (2011).
    • 68 Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N. Engl. J. Med. 362(2), 138–145 (2010).
    • 69 Delaere PR, Vranckx JJ, Den Hondt M. Tracheal allograft after withdrawal of immunosuppressive therapy. N. Engl. J. Med. 370(16), 1568–1570 (2014).•• A series of tracheal allotransplantations using heterotopic vascularized tracheal allograft after withdrawal of immunosuppressive therapy.
    • 70 Fuchs E. Skin stem cells: rising to the surface. J. Cell Biol. 180(2), 273–284 (2008).
    • 71 Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells 20(1), 21–31 (2002).
    • 72 Li A, Pouliot N, Redvers R, Kaur P. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest. 113(3), 390–400 (2004).
    • 73 Giangreco A, Arwert EN, Rosewell IR, Snyder J, Watt FM, Stripp BR. Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc. Natl Acad. Sci. USA 106(23), 9286–9291 (2009).
    • 74 Roomans GM. Tissue engineering and the use of stem/progenitor cells for airway epithelium repair. Eur. Cells Mater. 19, 284–299 (2010).•• Precious expert opinion review of stem/progenitor cells used for tissue-engineered tracheal epithelium.
    • 75 Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG. Cellular and molecular characteristics of basal cells in airway epithelium. Exp. Lung Res. 27(5), 401–415 (2001).
    • 76 Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 157(6 Pt 1), 2000–2006 (1998).
    • 77 Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH. Evidence for stem-cell niches in the tracheal epithelium. Am. J. Respir. Cell Mol. Biol. 24(6), 662–670 (2001).
    • 78 Randell SH. Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 3(8), 718–725 (2006).
    • 79 Liu JY, Nettesheim P, Randell SH. Growth and differentiation of tracheal epithelial progenitor cells. Am. J. Physiol. 266(3 Pt 1), L296–L307 (1994).
    • 80 Randell SH, Comment CE, Ramaekers FC, Nettesheim P. Properties of rat tracheal epithelial cells separated based on expression of cell surface alpha-galactosyl end groups. Am. J. Respir. Cell Mol. Biol. 4(6), 544–554 (1991).
    • 81 Engelhardt JF, Schlossberg H, Yankaskas JR, Dudus L. Progenitor cells of the adult human airway involved in submucosal gland development. Development 121(7), 2031–2046 (1995).
    • 82 Rock JR, Onaitis MW, Rawlins EL et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106(31), 12771–12775 (2009).
    • 83 Avril-Delplanque A, Casal I, Castillon N, Hinnrasky J, Puchelle E, Peault B. Aquaporin-3 expression in human fetal airway epithelial progenitor cells. Stem Cells 23(7), 992–1001 (2005).
    • 84 Hegab AE, Ha VL, Darmawan DO et al. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl. Med. 1(10), 719–724 (2012).
    • 85 Hegab AE, Ha VL, Gilbert JL et al. Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells 29(8), 1283–1293 (2011).
    • 86 Liu X, Driskell RR, Engelhardt JF. Airway glandular development and stem cells. Curr. Top. Dev. Biol. 64, 33–56 (2004).
    • 87 Hegab AE, Ha VL, Attiga YS, Nickerson DW, Gomperts BN. Isolation of basal cells and submucosal gland duct cells from mouse trachea. J. Visual. Exp. (67), e3731 (2012).
    • 88 Hegab AE, Nickerson DW, Ha VL, Darmawan DO, Gomperts BN. Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury. Respirology 17(7), 1101–1113 (2012).
    • 89 Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213(2), 341–347 (2007).
    • 90 Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 37(12), 1445–1453 (2009).
    • 91 Shen JL, Huang YZ, Xu SX et al. Effectiveness of human mesenchymal stem cells derived from bone marrow cryopreserved for 23–25 years. Cryobiology 64(3), 167–175 (2012).
    • 92 Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25(11), 2896–2902 (2007).
    • 93 Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol. Ther. 17(6), 939–946 (2009).
    • 94 Paunescu V, Deak E, Herman D et al. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J. Cell. Mol. Med. 11(3), 502–508 (2007).
    • 95 Krause DS, Theise ND, Collector MI et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3), 369–377 (2001).
    • 96 Macpherson H, Keir P, Webb S et al. Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo. J. Cell Sci. 118(Pt 11), 2441–2450 (2005).
    • 97 Wong AP, Keating A, Lu WY et al. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J. Clin. Invest. 119(2), 336–348 (2009).
    • 98 King SN, Hanson SE, Hematti P, Thibeault SL. Current applications of mesenchymal stem cells for tissue replacement in otolaryngology-head and neck surgery. Am. J. Stem Cells 1(3), 225–238 (2012).
    • 99 Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium. Am. J. Respir. Cell Mol. Biol. 33(4), 328–334 (2005).
    • 100 Loi R, Beckett T, Goncz KK, Suratt BT, Weiss DJ. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am. J. Respir. Crit. Care Med. 173(2), 171–179 (2006).
    • 101 Bessa PC, Pedro AJ, Klosch B et al. Osteoinduction in human fat-derived stem cells by recombinant human bone morphogenetic protein-2 produced in Escherichia coli. Biotechnol. Lett. 30(1), 15–21 (2008).
    • 102 Betz OB, Betz VM, Abdulazim A et al. The repair of critical-sized bone defects using expedited, autologous BMP-2 gene-activated fat implants. Tissue Eng. A 16(3), 1093–1101 (2010).
    • 103 Li H, Xu Y, Fu Q, Li C. Effects of multiple agents on epithelial differentiation of rabbit adipose-derived stem cells in 3D culture. Tissue Eng. A 18(17–18), 1760–1770 (2012).
    • 104 Wood MW, Murphy SV, Feng X, Wright SC Jr. Tracheal reconstruction in a canine model. Otolaryngol. Head Neck Surg. 150(3), 428–433 (2014).
    • 105 Coraux C, Nawrocki-Raby B, Hinnrasky J et al. Embryonic stem cells generate airway epithelial tissue. Am. J. Respir. Cell Mol. Biol. 32(2), 87–92 (2005).
    • 106 Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4), 661–680 (2008).
    • 107 Van Vranken BE, Romanska HM, Polak JM, Rippon HJ, Shannon JM, Bishop AE. Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng. 11(7–8), 1177–1187 (2005).
    • 108 Nishimura Y, Hamazaki TS, Komazaki S, Kamimura S, Okochi H, Asashima M. Ciliated cells differentiated from mouse embryonic stem cells. Stem Cells 24(5), 1381–1388 (2006).
    • 109 Nishimura Y, Kurisaki A, Nakanishi M et al. Inhibitory Smad proteins promote the differentiation of mouse embryonic stem cells into ependymal-like ciliated cells. Biochem. Biophys. Res. Commun. 401(1), 1–6 (2010).
    • 110 Wang Y, Wong LB, Mao H. Induction of ciliated cells from avian embryonic stem cells using three-dimensional matrix. Tissue Eng. C Methods 16(5), 929–936 (2010).
    • 111 Spence JR, Mayhew CN, Rankin SA et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332), 105–109 (2011).
    • 112 Longmire TA, Ikonomou L, Hawkins F et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10(4), 398–411 (2012).
    • 113 Mou H, Zhao R, Sherwood R et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10(4), 385–397 (2012).
    • 114 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006).
    • 115 Park IH, Arora N, Huo H et al. Disease-specific induced pluripotent stem cells. Cell 134(5), 877–886 (2008).
    • 116 Li J, Song W, Pan G, Zhou J. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. J. Hematol. Oncol. 7(1), 50 (2014).
    • 117 Ghaedi M, Mendez JJ, Bove PF, Sivarapatna A, Raredon MS, Niklason LE. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials 35(2), 699–710 (2014).
    • 118 Wong AP, Bear CE, Chin S et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat. Biotechnol. 30(9), 876–882 (2012).
    • 119 Kim K, Doi A, Wen B et al. Epigenetic memory in induced pluripotent stem cells. Nature 467(7313), 285–290 (2010).
    • 120 Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15(2), 82–92 (2014).
    • 121 Tobin SC, Kim K. Generating pluripotent stem cells: differential epigenetic changes during cellular reprogramming. FEBS Lett. 586(18), 2874–2881 (2012).
    • 122 Carraro G, Perin L, Sedrakyan S et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 26(11), 2902–2911 (2008).
    • 123 Joo S, Ko IK, Atala A, Yoo JJ, Lee SJ. Amniotic fluid-derived stem cells in regenerative medicine research. Arch. Pharmacol. Res. 35(2), 271–280 (2012).
    • 124 Bajek A, Olkowska J, Gurtowska N et al. Human amniotic-fluid-derived stem cells: a unique source for regenerative medicine. Expert Opin. Biol. Ther. 14(6), 831–839 (2014).
    • 125 Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod. Biomed. Online 18(Suppl. 1), 17–27 (2009).
    • 126 Mirabella T, Cilli M, Carlone S, Cancedda R, Gentili C. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials 32(15), 3689–3699 (2011).
    • 127 Mirabella T, Poggi A, Scaranari M et al. Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation. Biomaterials 32(18), 4218–4227 (2011).
    • 128 Lim IJ, Phan TT. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane. Cell Transplant. 23(4–5), 497–503 (2014).
    • 129 Armson BA. Umbilical cord blood banking: implications for perinatal care providers. J. Obstetr. Gynaecol. Can. 27(3), 263–290 (2005).
    • 130 Yu X, Gu Z, Wang Y, Wang H. New strategies in cord blood cells transplantation. Cell Biol. Int. 37(9), 865–874 (2013).
    • 131 Milano F, Boelens JJ. Stem cell comparison: what can we learn clinically from unrelated cord blood transplantation as an alternative stem cell source? Cytotherapy 17(6), 695–701 (2015).
    • 132 Bojanic I, Golubic Cepulic B. [Umbilical cord blood as a source of stem cells]. Acta Medica Croatica: Casopis Hravatske Akademije Medicinskih Znanosti 60(3), 215–225 (2006).
    • 133 Horwitz ME, Frassoni F. Improving the outcome of umbilical cord blood transplantation through ex vivo expansion or graft manipulation. Cytotherapy 17(6), 730–738 (2015).
    • 134 Norkin M, Lazarus HM, Wingard JR. Umbilical cord blood graft enhancement strategies: has the time come to move these into the clinic? Bone Marrow Transplant. 48(7), 884–889 (2013).
    • 135 Sueblinvong V, Loi R, Eisenhauer PL et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am. J. Respir. Crit. Care Med. 177(7), 701–711 (2008).
    • 136 Cutler C, Multani P, Robbins D et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122(17), 3074–3081 (2013).
    • 137 Bautista G, Regidor C, Gonzalo-Daganzo R, Cabrera JR. Umbilical cord blood cell transplantation from an unrelated donor: dual transplantation. Methods Find. Exp. Clin. Pharmacol. 32(Suppl. A), 47–51 (2010).
    • 138 Vrana NE, Lavalle P, Dokmeci MR, Dehghani F, Ghaemmaghami AM, Khademhosseini A. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review. Tissue Eng. B Rev. 19(6), 529–543 (2013).•• Precious and recent review of epithelial tissue engineering.
    • 139 Pfenninger C, Leinhase I, Endres M et al. Tracheal remodeling: comparison of different composite cultures consisting of human respiratory epithelial cells and human chondrocytes. In vitro cellular & developmental biology. Animal 43(1), 28–36 (2007).
    • 140 Vrana NE, Dupret-Bories A, Bach C et al. Modification of macroporous titanium tracheal implants with biodegradable structures: tracking in vivo integration for determination of optimal in situ epithelialization conditions. Biotechnol. Bioeng. 109(8), 2134–2146 (2012).
    • 141 Goto Y, Noguchi Y, Nomura A et al. In vitro reconstitution of the tracheal epithelium. Am. J. Respir. Cell Mol. Biol. 20(2), 312–318 (1999).
    • 142 Kobayashi K, Nomoto Y, Suzuki T et al. Effect of fibroblasts on tracheal epithelial regeneration in vitro. Tissue Eng. 12(9), 2619–2628 (2006).
    • 143 Kobayashi K, Suzuki T, Nomoto Y et al. Potential of heterotopic fibroblasts as autologous transplanted cells for tracheal epithelial regeneration. Tissue Eng. 13(9), 2175–2184 (2007).
    • 144 Franzdottir SR, Axelsson IT, Arason AJ, Baldursson O, Gudjonsson T, Magnusson MK. Airway branching morphogenesis in three dimensional culture. Respir. Res. 11, 162 (2010).
    • 145 Pezzulo AA, Starner TD, Scheetz TE et al. The air–liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia.American journal of physiology. Lung Cell. Mol. Physiol. 300(1), L25–L31 (2011).
    • 146 Kanzaki M, Yamato M, Hatakeyama H et al. Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Eng. 12(5), 1275–1283 (2006).
    • 147 Larjava H, Koivisto L, Hakkinen L, Heino J. Epithelial integrins with special reference to oral epithelia. J. Dental Res. 90(12), 1367–1376 (2011).
    • 148 Kinikoglu B, Rodriguez-Cabello JC, Damour O, Hasirci V. The influence of elastin-like recombinant polymer on the self-renewing potential of a 3D tissue equivalent derived from human lamina propria fibroblasts and oral epithelial cells. Biomaterials 32(25), 5756–5764 (2011).
    • 149 Yen CM, Chan CC, Lin SJ. High-throughput reconstitution of epithelial–mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials 31(15), 4341–4352 (2010).
    • 150 Lebleu VS, Macdonald B, Kalluri R. Structure and function of basement membranes. Exp. Biol. Med. 232(9), 1121–1129 (2007).
    • 151 Neal RA, Mcclugage SG, Link MC, Sefcik LS, Ogle RC, Botchwey EA. Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng. C Methods 15(1), 11–21 (2009).
    • 152 Vrana NE, Dupret A, Coraux C, Vautier D, Debry C, Lavalle P. Hybrid titanium/biodegradable polymer implants with an hierarchical pore structure as a means to control selective cell movement. PLoS ONE 6(5), e20480 (2011).
    • 153 Crespin S, Bacchetta M, Huang S, Dudez T, Wiszniewski L, Chanson M. Approaches to study differentiation and repair of human airway epithelial cells. Methods Mol. Biol. 742, 173–185 (2011).
    • 154 Hirst RA, Jackson CL, Coles JL et al. Culture of primary ciliary dyskinesia epithelial cells at air–liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS ONE 9(2), e89675 (2014).
    • 155 Ross AJ, Dailey LA, Brighton LE, Devlin RB. Transcriptional profiling of mucociliary differentiation in human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 37(2), 169–185 (2007).
    • 156 Carson JL, Brighton LE, Jaspers I. Phenotypic modification of human airway epithelial cells in air–liquid interface culture induced by exposure to the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Ultrastruct. Pathol. 39(2), 104–109 (2015).
    • 157 Yang J, Yamato M, Kohno C et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26(33), 6415–6422 (2005).
    • 158 Kikuchi A, Okano T. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Control. Release 101(1–3), 69–84 (2005).
    • 159 Yang J, Yamato M, Nishida K et al. Cell delivery in regenerative medicine: the cell sheet engineering approach. J. Control. Release 116(2), 193–203 (2006).•• Important study describing epithelial cell sheets for engineering bioartificial trachea.
    • 160 Kanai N, Yamato M, Okano T. Cell sheets engineering for esophageal regenerative medicine. Ann. Transl. Med. 2(3), 28 (2014).
    • 161 Bardag-Gorce F, Oliva J, Wood A et al. Carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) for corneal epithelium reconstruction: a histological study. Ocul. Surf. 13(2), 150–163 (2015).
    • 162 Hama T, Yamamoto K, Yaguchi Y et al. Autologous human nasal epithelial cell sheet using temperature-responsive culture insert for transplantation after middle ear surgery. J. Tissue Eng. Regen. Med. doi:10.1002/term.2012 (2015) (Epub ahead of print).
    • 163 Macchiarini P, Jungebluth P, Go T et al. Clinical transplantation of a tissue-engineered airway. Lancet 372(9655), 2023–2030 (2008).•• The first report for clinical application of a successful, stem cell-based tissue-engineered tracheal transplantation in humans.
    • 164 Gonfiotti A, Jaus MO, Barale D et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet 383(9913), 238–244 (2014).•• Five years follow-up of the first tissue-engineered airway transplantation.
    • 165 Omori K, Nakamura T, Kanemaru S et al. Regenerative medicine of the trachea: the first human case. Ann. Otol. Rhinol. Laryngol. 114(6), 429–433 (2005).
    • 166 Omori K, Tada Y, Suzuki T et al. Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea. Ann. Otol. Rhinol. Laryngol. 117(9), 673–678 (2008).
    • 167 Elliott MJ, De Coppi P, Speggiorin S et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 380(9846), 994–1000 (2012).•• An important clinical report of the first tissue-engineered tracheal replacement in the pediatric patient.
    • 168 Hamilton NJ, Kanani M, Roebuck DJ et al. Tissue-engineered tracheal replacement in a child: a 4-year follow-up study. Am. J. Transplant. doi: 10.1111/ajt.13318 (2015) (Epub ahead of print).•• Four-year follow up of the first pediatric patient who received tissue-engineered tracheal replacement.
    • 169 Macchiarini P, Walles T, Biancosino C, Mertsching H First human transplantation of a bioengineered airway tissue. J. Thorac. Cardiovasc. Surg. 128(4), 638–641 (2004).
    • 170 Walles T, Steger V, Wurst H, Schmidt KD, Friedel G. Pumpless extracorporeal gas exchange aiding central airway surgery. J. Thorac. Cardiovasc. Surg. 136(5), 1372–1374 (2008).