We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Stem cell recruitment after injury: lessons for regenerative medicine

    Robert C Rennert

    Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA

    ,
    Michael Sorkin

    Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA

    ,
    Ravi K Garg

    Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA

    &
    Geoffrey C Gurtner

    * Author for correspondence

    Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA.

    Published Online:https://doi.org/10.2217/rme.12.82

    Tissue repair and regeneration are thought to involve resident cell proliferation as well as the selective recruitment of circulating stem and progenitor cell populations through complex signaling cascades. Many of these recruited cells originate from the bone marrow, and specific subpopulations of bone marrow cells have been isolated and used to augment adult tissue regeneration in preclinical models. Clinical studies of cell-based therapies have reported mixed results, however, and a variety of approaches to enhance the regenerative capacity of stem cell therapies are being developed based on emerging insights into the mechanisms of progenitor cell biology and recruitment following injury. This article discusses the function and mechanisms of recruitment of important bone marrow-derived stem and progenitor cell populations following injury, as well as the emerging therapeutic applications targeting these cells.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Hamou C, Callaghan MJ, Thangarajah H et al. Mesenchymal stem cells can participate in ischemic neovascularization. Plast. Reconstr. Surg.123(2 Suppl.),S45–S55 (2009).
    • Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells26(8),2083–2092 (2008).
    • Tepper OM, Capla JM, Galiano RD et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood105(3),1068–1077 (2005).
    • Xynos A, Corbella P, Belmonte N, Zini R, Manfredini R, Ferrari G. Bone marrow-derived hematopoietic cells undergo myogenic differentiation following a Pax-7 independent pathway. Stem Cells28(5),965–973 (2010).
    • Deng J, Zou ZM, Zhou TL et al. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol. Sci.32(4),641–651 (2011).
    • Qian H, Yang H, Xu W et al. Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int. J. Mol. Med.22(3),325–332 (2008).
    • Park D, Spencer JA, Koh BI et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell10(3),259–272 (2012).
    • Zhao W, Li JJ, Cao DY et al. Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis. World J. Gastroenterol.18(10),1048–1058 (2012).
    • Schenk S, Mal N, Finan A et al. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells25(1),245–251 (2007).
    • 10  Hamada H, Kim MK, Iwakura A et al. Estrogen receptors α and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation114(21),2261–2270 (2006).
    • 11  Chen Y, Xiang LX, Shao JZ et al. Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J. Cell. Mol. Med.14(6B),1494–1508 (2010).
    • 12  Si Y, Tsou CL, Croft K, Charo IF. CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J. Clin. Invest.120(4),1192–1203 (2010).
    • 13  Fan Y, Shen F, Frenzel T et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann. Neurol.67(4),488–497 (2010).
    • 14  Schuh A, Liehn EA, Sasse A et al. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res. Cardiol.103(1),69–77 (2008).
    • 15  Lam CF, Roan JN, Lee CH et al. Transplantation of endothelial progenitor cells improves pulmonary endothelial function and gas exchange in rabbits with endotoxin-induced acute lung injury. Anesth. Analg.112(3),620–627 (2011).
    • 16  Nakamura T, Torimura T, Iwamoto H et al. Prevention of liver fibrosis and liver reconstitution of DMN-treated rat liver by transplanted EPCs. Eur. J. Clin. Invest. (2011).
    • 17  Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog. Neurobiol.95(2),213–228 (2011).
    • 18  Hara Y, Stolk M, Ringe J et al.In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transpl. Int.24(11),1112–1123 (2011).
    • 19  Pati S, Gerber MH, Menge TD et al. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PLoS One6(9),e25171 (2011).
    • 20  Dawn B, Tiwari S, Kucia MJ et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells26(6),1646–1655 (2008).
    • 21  Malliaras K, Kreke M, Marban E. The stuttering progress of cell therapy for heart disease. Clin. Pharmacol. Ther.90(4),532–541 (2011).▪ Review of clinical trials using stem cell therapies for cardiac disease.
    • 22  Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA. Concise review. Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells29(6),913–919 (2011).
    • 23  Jablonska A, Lukomska B. Stroke induced brain changes: implications for stem cell transplantation. Acta Neurobiol. Exp. (Wars.)71(1),74–85 (2011).
    • 24  Phinney DD. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J. Cell. Biochem.113(9),2806–2812 (2012).
    • 25  Challen GA, Boles N, Lin KK, Goodell MA. Mouse hematopoietic stem cell identification and analysis. Cytometry A75(1),14–24 (2009).
    • 26  Ratajczak MZ. Phenotypic and functional characterization of hematopoietic stem cells. Curr. Opin. Hematol.15(4),293–300 (2008).
    • 27  Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121(7),1109–1121 (2005).
    • 28  Larochelle A, Savona M, Wiggins M et al. Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers. Blood117(5),1550–1554 (2011).
    • 29  Massa M, Rosti V, Ferrario M et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood105(1),199–206 (2005).
    • 30  Paczkowska E, Kucia M, Koziarska D et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke40(4),1237–1244 (2009).
    • 31  Gehling UM, Willems M, Schlagner K et al. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis. World J. Gastroenterol.16(2),217–224 (2010).
    • 32  Drukala J, Paczkowska E, Kucia M et al. Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev.8(1),184–194 (2012).
    • 33  Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. N. Y. Acad. Sci.938,221–229; discussion 229–230 (2001).
    • 34  Lin F, Cordes K, Li L et al. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J. Am. Soc. Nephrol.14(5),1188–1199 (2003).
    • 35  Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428(6983),668–673 (2004).
    • 36  Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells29(11),1650–1655 (2011).
    • 37  Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302),964–967 (1997).▪ First paper to describe endothelial progenitor cells.
    • 38  Shepherd RM, Capoccia BJ, Devine SM et al. Angiogenic cells can be rapidly mobilized and efficiently harvested from the blood following treatment with AMD3100. Blood108(12),3662–3667 (2006).
    • 39  Yoon CH, Hur J, Park KW et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation112(11),1618–1627 (2005).
    • 40  Timmermans F, Van Hauwermeiren F, De Smedt M et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol.27(7),1572–1579 (2007).
    • 41  Yoder MC, Mead LE, Prater D et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood109(5),1801–1809 (2007).
    • 42  Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined?. J. Cell. Mol. Med.13(1),87–102 (2009).
    • 43  Bailey AS, Willenbring H, Jiang S et al. Myeloid lineage progenitors give rise to vascular endothelium. Proc. Natl Acad. Sci. USA103(35),13156–13161 (2006).
    • 44  Masuda H, Alev C, Akimaru H et al. Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circ. Res.109(1),20–37 (2011).
    • 45  Sandri M, Beck EB, Adams V et al. Maximal exercise, limb ischemia, and endothelial progenitor cells. Eur. J. Cardiovasc. Prev. Rehabil.18(1),55–64 (2011).
    • 46  Urbich C, Aicher A, Heeschen C et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol.39(5),733–742 (2005).
    • 47  Fadini GP, Miorin M, Facco M et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J. Am. Coll. Cardiol.45(9),1449–1457 (2005).
    • 48  Sorrentino SA, Bahlmann FH, Besler C et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. Circulation116(2),163–173 (2007).
    • 49  Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411),143–147 (1999).
    • 50  Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7(2),211–228 (2001).▪ First paper to describe isolation of mesenchymal stem cells from adipose tissue.
    • 51  Chong PP, Selvaratnam L, Abbas AA, Kamarul T. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J. Orthop. Res.30(4),634–642 (2012).
    • 52  Da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell. Sci.119(Pt 11),2204–2213 (2006).
    • 53  Dodson MV, Hausman GJ, Guan L et al. Skeletal muscle stem cells from animals I. Basic cell biology. Int. J. Biol. Sci.6(5),465–474 (2010).
    • 54  Feng J, Mantesso A, Sharpe PT. Perivascular cells as mesenchymal stem cells. Expert Opin. Biol. Ther.10(10),1441–1451 (2010).
    • 55  Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol.180(4),2581–2587 (2008).
    • 56  Bae KS, Park JB, Kim HS, Kim DS, Park DJ, Kang SJ. Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei Med. J.52(3),401–412 (2011).
    • 57  Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8(4),315–317 (2006).
    • 58  Morikawa S, Mabuchi Y, Kubota Y et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med.206(11),2483–2496 (2009).
    • 59  Nguyen BK, Maltais S, Perrault LP et al. Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J. Cardiovasc. Transl. Res.3(5),547–558 (2010).
    • 60  Katsha AM, Ohkouchi S, Xin H et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol. Ther.19(1),196–203 (2011).
    • 61  Xu X, Xu Z, Xu Y, Cui G. Selective down-regulation of extracellular matrix gene expression by bone marrow derived stem cell transplantation into infarcted myocardium. Circ. J.69(10),1275–1283 (2005).
    • 62  Xu X, Xu Z, Xu Y, Cui G. Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron. Artery Dis.16(4),245–255 (2005).
    • 63  Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl Acad. Sci. USA104(26),11002–11007 (2007).
    • 64  Dayan V, Yannarelli G, Billia F et al. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res. Cardiol.106(6),1299–1310 (2011).
    • 65  Hatzistergos KE, Quevedo H, Oskouei BN et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ. Res.107(7),913–922 (2010).
    • 66  Kasper G, Dankert N, Tuischer J et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells25(4),903–910 (2007).
    • 67  Li Z, Guo J, Chang Q, Zhang A. Paracrine role for mesenchymal stem cells in acute myocardial infarction. Biol. Pharm. Bull.32(8),1343–1346 (2009).
    • 68  Wong CY, Cheong SK, Mok PL, Leong CF. Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology40(1),52–57 (2008).
    • 69  De La Garza-Rodea AS, Van Der Velde I, Boersma H et al. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant.20(2),217–231 (2011).
    • 70  Hughey CC, Johnsen VL, Ma L et al. Mesenchymal stem cell transplantation for the infarcted heart: a role in minimizing abnormalities in cardiac-specific energy metabolism. Am. J. Physiol. Endocrinol. Metab.302(2),E163–E172 (2012).
    • 71  Jui HY, Lin CH, Hsu WT et al. Autologous mesenchymal stem cells prevent transplant arteriosclerosis by enhancing local expression of interleukin-10, interferon-γ, and indoleamine 2,3-dioxygenase. Cell Transplant.21(5),971–984 (2012).
    • 72  Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation90(12),1312–1320 (2010).
    • 73  Kucia M, Reca R, Campbell FR et al. A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia20(5),857–869 (2006).▪ First paper to describe very small embryonic-like stem cells.
    • 74  Zuba-Surma EK, Kucia M, Wu W et al. Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A73A(12),1116–1127 (2008).
    • 75  Sovalat H, Scrofani M, Eidenschenk A, Pasquet S, Rimelen V, Henon P. Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34+/CD133+/CXCR4+/Lin-CD45- cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Exp. Hematol.39(4),495–505 (2011).
    • 76  Shin DM, Liu R, Klich I et al. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia24(8),1450–1461 (2010).
    • 77  Ratajczak MZ, Zuba-Surma EK, Shin DM, Ratajczak J, Kucia M. Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp. Gerontol.43(11),1009–1017 (2008).
    • 78  Wojakowski W, Tendera M, Kucia M et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J. Am. Coll. Cardiol.53(1),1–9 (2009).
    • 79  Kavanagh DP, Kalia N. Hematopoietic stem cell homing to injured tissues. Stem Cell Rev.7(3),672–682 (2011).
    • 80  Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials32(12),3189–3209 (2011).
    • 81  Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J. Mol. Cell. Cardiol.45(4),514–522 (2008).
    • 82  Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation110(21),3300–3305 (2004).
    • 83  Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Med.10(8),858–864 (2004).▪▪ One of the first reports that recruitment of CXCR4-positive progenitor cells to regenerating tissues is mediated by hypoxic gradients via HIF-1-induced expression of SDF-1.
    • 84  Hiasa K, Ishibashi M, Ohtani K et al. Gene transfer of stromal cell-derived factor-1α enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation109(20),2454–2461 (2004).
    • 85  Kwon SM, Eguchi M, Wada M et al. Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation118(2),157–165 (2008).
    • 86  Li Y, Hiroi Y, Ngoy S et al. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation123(8),866–876 (2011).
    • 87  Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell2(6),566–575 (2008).
    • 88  Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science324(5935),1673–1677 (2009).
    • 89  Youn SW, Lee SW, Lee J et al. COMP-Ang1 stimulates HIF-1α-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood117(16),4376–4386 (2011).
    • 90  Massberg S, Konrad I, Schurzinger K et al. Platelets secrete stromal cell-derived factor 1α and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J. Exp. Med.203(5),1221–1233 (2006).
    • 91  Brandao D, Costa C, Canedo A, Vaz G, Pignatelli D. Endogenous vascular endothelial growth factor and angiopoietin-2 expression in critical limb ischemia. Int. Angiol.30(1),25–34 (2011).
    • 92  Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL et al. Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp. Hematol.29(3),345–355 (2001).
    • 93  Lataillade JJ, Clay D, Dupuy C et al. Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood95(3),756–768 (2000).
    • 94  Liu X, Duan B, Cheng Z et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell2(10),845–854 (2011).
    • 95  Tang YL, Qian K, Zhang YC, Shen L, Phillips MI. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cell-derived factor-1alpha (SDF-1alpha) treatment. Regul. Pept.125(1–3),1–8 (2005).
    • 96  Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109(5),625–637 (2002).
    • 97  Peled A, Grabovsky V, Habler L et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J. Clin. Invest.104(9),1199–1211 (1999).
    • 98  Li N, Lu X, Zhao X et al. Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells27(4),961–970 (2009).
    • 99  Kaminski A, Ma N, Donndorf P et al. Endothelial NOS is required for SDF-1α/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells. Lab. Invest.88(1),58–69 (2008).
    • 100  Varnum-Finney B, Xu L, Brashem-Stein C et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med.6(11),1278–1281 (2000).
    • 101  Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature433(7027),760–764 (2005).
    • 102  Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N. Differential notch signalling distinguishes neural stem cells from intermediate progenitors. Nature449(7160),351–355 (2007).
    • 103  Wang YC, Hu XB, He F et al. Lipopolysaccharide-induced maturation of bone marrow-derived dendritic cells is regulated by notch signaling through the up-regulation of CXCR4. J. Biol. Chem.284(23),15993–16003 (2009).
    • 104  Walenta KL, Bettink S, Bohm M, Friedrich EB. Differential chemokine receptor expression regulates functional specialization of endothelial progenitor cell subpopulations. Basic Res. Cardiol.106(2),299–305 (2011).
    • 105  Hattori K, Dias S, Heissig B et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med.193(9),1005–1014 (2001).
    • 106  Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell4(1),62–72 (2009).
    • 107  Hopkins SP, Bulgrin JP, Sims RL, Bowman B, Donovan DL, Schmidt SP. Controlled delivery of vascular endothelial growth factor promotes neovascularization and maintains limb function in a rabbit model of ischemia. J. Vasc. Surg.27(5),886–894; discussion 895 (1998).
    • 108  Wu X, Wang K, Cui L et al. Effects of granulocyte-colony stimulating factor on the repair of balloon-injured arteries. Pathology40(5),513–519 (2008).
    • 109  Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest.111(2),187–196 (2003).
    • 110  Hasselblatt M, Jeibmann A, Riesmeier B, Maintz D, Schabitz WR. Granulocyte-colony stimulating factor (G-CSF) and G-CSF receptor expression in human ischemic stroke. Acta Neuropathol.113(1),45–51 (2007).
    • 111  Oladipupo S, Hu S, Kovalski J et al. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc. Natl Acad. Sci. USA108(32),13264–13269 (2011).
    • 112  Thankamony SP, Sackstein R. Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc. Natl Acad. Sci. USA108(6),2258–2263 (2011).
    • 113  Ruster B, Gottig S, Ludwig RJ et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood108(12),3938–3944 (2006).
    • 114  Yoon CH, Hur J, Oh IY et al. Intercellular adhesion molecule-1 is upregulated in ischemic muscle, which mediates trafficking of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol.26(5),1066–1072 (2006).
    • 115  Chamberlain G, Smith H, Rainger GE, Middleton J. Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear. PLoS One6(9),e25663 (2011).
    • 116  Tondreau T, Meuleman N, Stamatopoulos B et al.In vitro study of matrix metalloproteinase/tissue inhibitor of metalloproteinase production by mesenchymal stromal cells in response to inflammatory cytokines: the role of their migration in injured tissues. Cytotherapy11(5),559–569 (2009).
    • 117  Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood109(9),4055–4063 (2007).
    • 118  Hoover-Plow J, Gong Y. Challenges for heart disease stem cell therapy. Vasc. Health Risk Manag.8,99–113 (2012).
    • 119  Teng CJ, Luo J, Chiu RC, Shum-Tim D. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J. Thorac. Cardiovasc. Surg.132(3),628–632 (2006).
    • 120  Iso Y, Spees JL, Serrano C et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun.354(3),700–706 (2007).
    • 121  Burst VR, Gillis M, Putsch F et al. Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp. Nephrol.114(3),E107–E116 (2010).
    • 122  Demetrius L. Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans. EMBO Rep.6Spec No, S39–S44 (2005).
    • 123  Ginis I, Luo Y, Miura T et al. Differences between human and mouse embryonic stem cells. Dev. Biol.269(2),360–380 (2004).
    • 124  Van Der Spoel TI, Jansen of Lorkeers SJ, Agostoni P et al. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc. Res.91(4),649–658 (2011).
    • 125  Glotzbach JP, Januszyk M, Vial IN et al. An information theoretic, microfluidic-based single cell analysis permits identification of subpopulations among putatively homogeneous stem cells. PLoS One6(6),e21211 (2011).
    • 126  Graf T, Stadtfeld M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell3(5),480–483 (2008).
    • 127  Brauninger S, Bialleck H, Thorausch K, Felt T, Seifried E, Bonig H. Allogeneic donor peripheral blood “stem cell” apheresis: prospective comparison of two apheresis systems. Transfusion52(5),1137–1145 (2012).
    • 128  Broxmeyer HE, Hangoc G, Cooper S, Campbell T, Ito S, Mantel C. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann. N. Y. Acad. Sci.1106,1–19 (2007).
    • 129  Liu F, Pan X, Chen G et al. Hematopoietic stem cells mobilized by granulocyte colony-stimulating factor partly contribute to liver graft regeneration after partial orthotopic liver transplantation. Liver Transpl.12(7),1129–1137 (2006).
    • 130  Takamiya M, Okigaki M, Jin D et al. Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/Flk-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler. Thromb. Vasc. Biol.26(4),751–757 (2006).
    • 131  Mark AL, Sun Z, Warren DS et al. Stem cell mobilization is life saving in an animal model of acute liver failure. Ann. Surg.252(4),591–596 (2010).
    • 132  Kawabe-Yako R, Masaaki I, Masuo O, Asahara T, Itakura T. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model. PLoS One6(9),e24646 (2011).
    • 133  Li X, Xu B. HMG-CoA reductase inhibitor regulates endothelial progenitor function through the phosphatidylinositol 3'-kinase/AKT signal transduction pathway. Appl. Biochem. Biotechnol.157(3),545–553 (2009).
    • 134  Urao N, Okigaki M, Yamada H et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ. Res.98(11),1405–1413 (2006).
    • 135  Gensch C, Clever YP, Werner C, Hanhoun M, Bohm M, Laufs U. The PPAR-γ agonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis192(1),67–74 (2007).
    • 136  Oh IY, Yoon CH, Hur J et al. Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood110(12),3891–3899 (2007).
    • 137  Hannoush EJ, Sifri ZC, Elhassan IO et al. Impact of enhanced mobilization of bone marrow derived cells to site of injury. J. Trauma.71(2),283–289; discussion 289–291 (2011).
    • 138  Sasaki T, Fukazawa R, Ogawa S et al. Stromal cell-derived factor-1α improves infarcted heart function through angiogenesis in mice. Pediatr. Int.49(6),966–971 (2007).
    • 139  Cross DP, Wang C. Stromal-derived factor-1 α-loaded PLGA microspheres for stem cell recruitment. Pharm. Res.28(10),2477–2489 (2011).
    • 140  Huang M, Nguyen P, Jia F et al. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation124(Suppl. 11),S46–S54 (2011).
    • 141  Haider H, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ. Res.103(11),1300–1308 (2008).
    • 142  He X, Ma J, Jabbari E. Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1α from poly(lactide ethylene oxide fumarate) hydrogels. Int. J. Pharm.390(2),107–116 (2010).
    • 143  Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, Zhang J. Controlled release of stromal cell-derived factor-1α in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng.13(8),2063–2071 (2007).
    • 144  Abdel-Latif A, Bolli R, Zuba-Surma EK, Tleyjeh IM, Hornung CA, Dawn B. Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am. Heart J.156(2),216–226.e9 (2008).
    • 145  Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ. Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J.26(1),158–168 (2012).
    • 146  Shin JW, Lee JK, Lee JE et al. Combined effects of hematopoietic progenitor cell mobilization from bone marrow by granulocyte colony stimulating factor and AMD3100 and chemotaxis into the brain using stromal cell-derived factor-1α in an Alzheimer’s disease mouse model. Stem Cells29(7),1075–1089 (2011).
    • 147  Askari AT, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362(9385),697–703 (2003).
    • 148  Yamaguchi J, Kusano KF, Masuo O et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation107(9),1322–1328 (2003).
    • 149  Kuliszewski MA, Kobulnik J, Lindner JR, Stewart DJ, Leong-Poi H. Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Mol. Ther.19(5),895–902 (2011).
    • 150  Aicher A, Heeschen C, Sasaki K, Urbich C, Zeiher AM, Dimmeler S. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation114(25),2823–2830 (2006).
    • 151  Seeger FH, Zeiher AM, Dimmeler S. Cell-enhancement strategies for the treatment of ischemic heart disease. Nat. Clin. Pract. Cardiovasc. Med.4(Suppl. 1),S110–S113 (2007).
    • 152  Lim SY, Kim YS, Ahn Y et al. The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc. Res.70(3),530–542 (2006).
    • 153  Cho J, Zhai P, Maejima Y, Sadoshima J. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ. Res.108(4),478–489 (2011).
    • 154  Song SW, Chang W, Song BW et al. Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells27(6),1358–1365 (2009).
    • 155  Chang W, Song BW, Lim S et al. Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells27(9),2283–2292 (2009).
    • 156  Li W, Ma N, Ong LL et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells25(8),2118–2127 (2007).
    • 157  Cui B, Huang L, Fang Y, Guo R, Yin Y, Zhao X. Transplantation of endothelial progenitor cells overexpressing endothelial nitric oxide synthase enhances inhibition of neointimal hyperplasia and restores endothelium-dependent vasodilatation. Microvasc. Res.81(1),143–150 (2011).
    • 158  Kong D, Melo LG, Mangi AA et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation109(14),1769–1775 (2004).
    • 159  Sasaki K, Heeschen C, Aicher A et al.Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc. Natl Acad. Sci. USA103(39),14537–14541 (2006).
    • 160  Aicher A, Heeschen C, Mildner-Rihm C et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.9(11),1370–1376 (2003).
    • 161  Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414(6865),813–820 (2001).
    • 162  Fichtlscherer S, Breuer S, Schachinger V, Dimmeler S, Zeiher AM. C-reactive protein levels determine systemic nitric oxide bioavailability in patients with coronary artery disease. Eur. Heart J.25(16),1412–1418 (2004).
    • 163  Iwaguro H, Yamaguchi J, Kalka C et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation105(6),732–738 (2002).
    • 164  Song MB, Yu XJ, Zhu GX, Chen JF, Zhao G, Huang L. Transfection of HGF gene enhances endothelial progenitor cell (EPC) function and improves EPC transplant efficiency for balloon-induced arterial injury in hypercholesterolemic rats. Vascul. Pharmacol.51(2–3),205–213 (2009).
    • 165  Tang J, Wang J, Yang J et al. Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur. J. Cardiothorac. Surg.36(4),644–650 (2009).
    • 166  Huang W, Wang T, Zhang D et al. Mesenchymal stem cells overexpressing CXCR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9. Stem Cells Dev.21(5),778–789 (2012).
    • 167  Zhang D, Fan GC, Zhou X et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol.44(2),281–292 (2008).
    • 168  Cheng Z, Ou L, Zhou X et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol. Ther.16(3),571–579 (2008).
    • 169  Chen L, Wu F, Xia WH et al. CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells. Cardiovasc. Res.88(3),462–470 (2010).
    • 170  Chavakis E, Aicher A, Heeschen C et al. Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med.201(1),63–72 (2005).
    • 171  Foubert P, Silvestre JS, Souttou B et al. PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells. J. Clin. Invest.117(6),1527–1537 (2007).
    • 172  Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR. Preconditioning mesenchymal stem cells with transforming growth factor-α improves mesenchymal stem cell-mediated cardioprotection. Shock33(1),24–30 (2010).
    • 173  Erwin GS, Crisostomo PR, Wang Y et al. Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. J. Surg. Res.152(2),319–324 (2009).
    • 174  Yu JX, Huang XF, Lv WM et al. Combination of stromal-derived factor-1α and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J. Vasc. Surg.50(3),608–616 (2009).
    • 175  Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature453(7193),314–321 (2008).
    • 176  Mooney DJ, Vandenburgh H. Cell delivery mechanisms for tissue repair. Cell Stem Cell2(3),205–213 (2008).
    • 177  Lund A, Yener B, Stegemann JP, Plopper GE. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng. Part B Rev.15(3),371–380 (2009).
    • 178  Schneider RK, Anraths J, Kramann R et al. The role of biomaterials in the direction of mesenchymal stem cell properties and extracellular matrix remodelling in dermal tissue engineering. Biomaterials31(31),7948–7959 (2010).
    • 179  Nguyen LH, Kudva AK, Saxena NS, Roy K. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials32(29),6946–6952 (2011).
    • 180  Simpson D, Liu H, Fan TH, Nerem R, Dudley SC Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells25(9),2350–2357 (2007).
    • 181  Gourdie RG, Myers TA, Mcfadden A, Li YX, Potts JD. Self-organizing tissue-engineered constructs in collagen hydrogels. Microsc. Microanal.18(1),99–106 (2012).
    • 182  Tanaka T, Hirose M, Kotobuki N et al. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds. J. Biomed. Mater. Res. A91(2),428–435 (2009).
    • 183  Baba S, Inoue T, Hashimoto Y et al. Effectiveness of scaffolds with pre-seeded mesenchymal stem cells in bone regeneration – assessment of osteogenic ability of scaffolds implanted under the periosteum of the cranial bone of rats. Dent. Mater. J.29(6),673–681 (2010).
    • 184  Ben-David D, Kizhner TA, Kohler T, Muller R, Livne E, Srouji S. Cell-scaffold transplant of hydrogel seeded with rat bone marrow progenitors for bone regeneration. J. Craniomaxillofac. Surg.39(5),364–371 (2011).
    • 185  Nguyen LH, Kudva AK, Guckert NL, Linse KD, Roy K. Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials32(5),1327–1338 (2011).
    • 186  Liu L, Wu W, Tuo X et al. Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold. Artif. Organs34(5),426–433 (2010).
    • 187  Jin J, Jeong SI, Shin YM et al. Transplantation of mesenchymal stem cells within a poly(lactide-co-ε-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur. J. Heart Fail.11(2),147–153 (2009).
    • 188  Wong VW, Rustad KC, Glotzbach JP et al. Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol. Biosci.11(11),1458–1466 (2011).
    • 189  Rustad KC, Wong VW, Sorkin M et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials33(1),80–90 (2012).
    • 190  Nukavarapu SP, Amini AR. Optimal scaffold design and effective progenitor cell identification for the regeneration of vascularized bone. Conf. Proc. IEEE Eng. Med. Biol. Soc.2011,2464–2467 (2011).
    • 191  Moioli EK, Clark PA, Chen M et al. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One3(12),e3922 (2008).
    • 192  Glotzbach JP, Wong VW, Gurtner GC, Longaker MT. Regenerative medicine. Curr. Probl. Surg.48(3),148–212 (2011).
    • 193  Chang EI, Bonillas RG, El-Ftesi S et al. Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. FASEB J.23(3),906–915 (2009).▪ Proof-of-concept of stem cell seeding of explantable microvascular beds.
    • 194  Danoviz ME, Nakamuta JS, Marques FL et al. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention. PLoS One5(8),e12077 (2010).
    • 195  Sun CK, Yen CH, Lin YC et al. Autologous transplantation of adipose-derived mesenchymal stem cells markedly reduced acute ischemia-reperfusion lung injury in a rodent model. J. Transl. Med.9,118 (2011).
    • 196  Chen YT, Sun CK, Lin YC et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl. Med.9,51 (2011).
    • 197  Lavi R, Zhu XY, Chade AR, Lin J, Lerman A, Lerman LO. Simvastatin decreases endothelial progenitor cell apoptosis in the kidney of hypertensive hypercholesterolemic pigs. Arterioscler. Thromb. Vasc. Biol.30(5),976–983 (2010).
    • 198  Zhong S, Shu S, Wang Z et al. Enhanced homing of mesenchymal stem cells to the ischemic myocardium by ultrasound-targeted microbubble destruction. Ultrasonics52(2),281–286 (2012).
    • 199  Xu YL, Gao YH, Liu Z et al. Myocardium-targeted transplantation of mesenchymal stem cells by diagnostic ultrasound-mediated microbubble destruction improves cardiac function in myocardial infarction of New Zealand rabbits. Int. J. Cardiol.138(2),182–195 (2010).
    • 200  Ghanem A, Steingen C, Brenig F et al. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. J. Mol. Cell. Cardiol.47(3),411–418 (2009).
    • 201  Zen K, Okigaki M, Hosokawa Y et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J. Mol. Cell. Cardiol.40(6),799–809 (2006).
    • 202  Jin SZ, Meng XW, Sun X et al. Granulocyte colony-stimulating factor enhances bone marrow mononuclear cell homing to the liver in a mouse model of acute hepatic injury. Dig. Dis. Sci.55(10),2805–2813 (2010).
    • 203  Zhang XM, Du F, Yang D et al. Granulocyte colony-stimulating factor increases the therapeutic efficacy of bone marrow mononuclear cell transplantation in cerebral ischemia in mice. BMC Neurosci.12,61 (2011).
    • 204  Jin SZ, Meng XW, Sun X et al. Hepatocyte growth factor promotes liver regeneration induced by transfusion of bone marrow mononuclear cells in a murine acute liver failure model. J. Hepatobiliary Pancreat. Sci.18(3),397–405 (2011).
    • 205  Jin SZ, Meng XW, Han MZ, Sun X, Sun LY, Liu BR. Stromal cell derived factor-1 enhances bone marrow mononuclear cell migration in mice with acute liver failure. World J. Gastroenterol.15(21),2657–2664 (2009).
    • 206  Kanki-Horimoto S, Horimoto H, Mieno S et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation114(Suppl. 1),I181–I185 (2006).
    • 207  Murasawa S, Llevadot J, Silver M, Isner JM, Losordo DW, Asahara T. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation106(9),1133–1139 (2002).
    • 208  Sen S, Merchan J, Dean J et al. Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction. Hum Gene Ther.21(10),1327–1334 (2010).
    • 209  Shinmura D, Togashi I, Miyoshi S et al. Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. Stem Cells29(2),357–366 (2011).
    • 210  Seeger FH, Haendeler J, Walter DH et al. p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation111(9),1184–1191 (2005).
    • 211  Numasawa Y, Kimura T, Miyoshi S et al. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells29(9),1405–1414 (2011).
    • 212  Frederick JR, Fitzpatrick JR 3rd, Mccormick RC et al. Stromal cell-derived factor-1α activation of tissue-engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis. Circulation122(11 Suppl.),S107–S117 (2010).
    • 213  Holladay CA, Duffy AM, Chen X, Sefton MV, O’Brien TD, Pandit AS. Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold. Biomaterials33(5),1303–1314 (2012).