We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Stem cell paracrine actions and tissue regeneration

    Priya R Baraniak

    The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA

    &
    Todd C McDevitt

    † Author for correspondence

    The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA

    The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.

    Published Online:https://doi.org/10.2217/rme.09.74

    Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • Scadden DT: The stem-cell niche as an entity of action. Nature441(7097),1075–1079 (2006).Crossref, Medline, CASGoogle Scholar
    • Kilroy GE, Foster SJ, Wu X et al.: Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and proinflammatory factors. J. Cell. Physiol.212(3),702–709 (2007).Crossref, Medline, CASGoogle Scholar
    • Caplan AI: Why are MSCs therapeutic? New data: new insight. J. Pathol.217(2),318–324 (2009).Crossref, Medline, CASGoogle Scholar
    • Sarojini H, Estrada R, Lu H et al.: PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J. Cell. Biochem.104(5),1793–1802 (2008).Crossref, Medline, CASGoogle Scholar
    • Schinkothe T, Bloch W, Schmidt A: In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev.17(1),199–206 (2008).Crossref, Medline, CASGoogle Scholar
    • Liu CH, Hwang SM: Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine32(6),270–279 (2005).Crossref, Medline, CASGoogle Scholar
    • Fu X, Li H: Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res.335(2),317–321 (2009).Crossref, MedlineGoogle Scholar
    • Ilancheran S, Moodley Y, Manuelpillai U: Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta30(1),2–10 (2009).Crossref, Medline, CASGoogle Scholar
    • Trivedi P, Hematti P: Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp. Hematol.36(3),350–359 (2008).Medline, CASGoogle Scholar
    • 10  Zhang W: Mesenchymal stem cells in cancer: friends or foes. Cancer Biol. Ther.7(2),252–254 (2008).Crossref, Medline, CASGoogle Scholar
    • 11  Bochev I, Elmadjian G, Kyurkchiev D et al.: Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol. Int.32(4),384–393 (2008).Crossref, Medline, CASGoogle Scholar
    • 12  Yen BL, Chang CJ, Chen YC, Hu H-I, Bai C-H, Yen M-L: Human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells27,451–456 (2009).Crossref, MedlineGoogle Scholar
    • 13  Bartholomew A, Sturgeon C, Siatskas M et al.: Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30(1),42–48 (2002).Crossref, MedlineGoogle Scholar
    • 14  Nasef A, Chapel A, Mazurier C et al.: Identification of IL-10 and TGF-β transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Exp.13(4–5),217–226 (2007).Crossref, MedlineGoogle Scholar
    • 15  English K, Barry FP, Field-Corbett CP, Mahon BP: IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett.110(2),91–100 (2007).Crossref, Medline, CASGoogle Scholar
    • 16  Sato K, Ozaki K, Oh I et al.: Nitric oxide plays a critical role in suppression of T cell proliferation by mesenchymal stem cells. Blood109(1),228–234 (2007).Crossref, Medline, CASGoogle Scholar
    • 17  Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D: Human bone marrow stromal cells inhibit allogeneic T cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood103(12),4619–4621 (2004).Crossref, Medline, CASGoogle Scholar
    • 18  Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC: Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia19(9),1597–1604 (2005).Crossref, Medline, CASGoogle Scholar
    • 19  Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood105(4),1815–1822 (2005).▪ Details interactions between bone marrow-derived mesenchymal stem cells and immune cells and elucidates mechanisms likely involved in mesenchymal stem cell modulation of inflammation.Crossref, Medline, CASGoogle Scholar
    • 20  Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P: Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol.171(7),3426–3434 (2003).Crossref, Medline, CASGoogle Scholar
    • 21  Yang SH, Park MJ, Yoon IH et al.: Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp. Mol. Med.41(5),315–324 (2009).Crossref, Medline, CASGoogle Scholar
    • 22  Asari S, Itakura S, Ferreri K et al.: Mesenchymal stem cells suppress B-cell terminal differentiation. Exp. Hematol.37(5),604–615 (2009).Crossref, Medline, CASGoogle Scholar
    • 23  Rasmusson I, Le Blanc K, Sundberg B, Ringden O: Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand. J. Immunol.65(4),336–343 (2007).Crossref, Medline, CASGoogle Scholar
    • 24  Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F: Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation83(1),71–76 (2007).Crossref, MedlineGoogle Scholar
    • 25  Djouad F, Charbonnier LM, Bouffi C et al.: Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells25(8),2025–2032 (2007).Crossref, Medline, CASGoogle Scholar
    • 26  Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood113(26),6576–6583 (2009).Crossref, Medline, CASGoogle Scholar
    • 27  Selmani Z, Naji A, Gaiffe E et al.: HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation87(Suppl. 9),S62–S66 (2009).Crossref, Medline, CASGoogle Scholar
    • 28  Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L: Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood107(4),1484–1490 (2006).Crossref, Medline, CASGoogle Scholar
    • 29  Ortiz LA, Dutreil M, Fattman C et al.: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl Acad. Sci. USA104(26),11002–11007 (2007).Crossref, Medline, CASGoogle Scholar
    • 30  Raffaghello L, Bianchi G, Bertolotto M et al.: Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells26(1),151–162 (2008).Crossref, Medline, CASGoogle Scholar
    • 31  Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV: Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation17(4),331–340 (1974).Crossref, Medline, CASGoogle Scholar
    • 32  Ren G, Zhang L, Zhao X et al.: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell2(2),141–150 (2008).Crossref, Medline, CASGoogle Scholar
    • 33  Koc ON, Gerson Sl, Cooper BW et al.: Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol.18(2),307–316 (2000).Crossref, Medline, CASGoogle Scholar
    • 34  Le Blanc K, Frassoni F, Ball L et al.: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a Phase II study. Lancet371(9624),1579–1586 (2008).Crossref, Medline, CASGoogle Scholar
    • 35  Le Blanc K, Rasmusson I, Sundberg B et al.: Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet363(9419),1439–1441 (2004).Crossref, MedlineGoogle Scholar
    • 36  Ringden O, Uzunel M, Rasmusson I et al.: Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation81(10),1390–1397 (2006).Crossref, MedlineGoogle Scholar
    • 37  Polchert D, Sobinsky J, Douglas G et al.: IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur. J. Immunol.38(6),1745–1755 (2008).Crossref, Medline, CASGoogle Scholar
    • 38  Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G: Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum.56(4),1175–1186 (2007).Crossref, Medline, CASGoogle Scholar
    • 39  Gerdoni E, Gallo B, Casazza S et al.: Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann. Neurol.61(3),219–227 (2007).Crossref, Medline, CASGoogle Scholar
    • 40  Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M: Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut58(7),929–939 (2009).Crossref, Medline, CASGoogle Scholar
    • 41  Gonzalez-Rey E, Gonzalez MA, Varela N et al.: Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann. Rheum. Dis. (2009) (Epub ahead of print).Google Scholar
    • 42  Haller MJ, Viener HL, Wasserfall C, Brusko T, Atkinson MA, Schatz DA: Autologous umbilical cord blood infusion for Type 1 diabetes. Exp. Hematol.36(6),710–715 (2008).Crossref, Medline, CASGoogle Scholar
    • 43  Gennery AR, Cant AJ: Cord blood stem cell transplantation in primary immune deficiencies. Curr. Opin. Allergy Clin. Immunol.7(6),528–534 (2007).Crossref, MedlineGoogle Scholar
    • 44  Tyndall A, Gratwohl A: Adult stem cell transplantation in autoimmune disease. Curr. Opin. Hematol.16(4),285–291 (2009).Crossref, Medline, CASGoogle Scholar
    • 45  Tyndall A, Uccelli A: Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplant.43(11),821–828 (2009).Crossref, Medline, CASGoogle Scholar
    • 46  Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia21(2),304–310 (2007).Crossref, Medline, CASGoogle Scholar
    • 47  Xu L, Yan J, Chen D et al.: Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation82(7),865–875 (2006).Crossref, MedlineGoogle Scholar
    • 48  Corti S, Locatelli F, Papadimitriou D et al.: Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain130(Pt 5),1289–1305 (2007).Crossref, MedlineGoogle Scholar
    • 49  Lu P, Jones LL, Snyder EY, Tuszynski MH: Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol.181(2),115–129 (2003).Crossref, Medline, CASGoogle Scholar
    • 50  Yan J, Welsh AM, Bora SH, Snyder EY, Koliatsos VE: Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J. Comp. Neurol.480(1),101–114 (2004).Crossref, MedlineGoogle Scholar
    • 51  Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG: Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol.198(1),54–64 (2006).Crossref, Medline, CASGoogle Scholar
    • 52  Kim YJ, Park HJ, Lee G et al.: Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia57(1),13–23 (2009).Crossref, MedlineGoogle Scholar
    • 53  Park HJ, Lee PH, Bang OY, Lee G, Ahn YH: Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J. Neurochem.107(1),141–151 (2008).Crossref, Medline, CASGoogle Scholar
    • 54  Zwart I, Hill AJ, Al-Allaf F et al.: Umbilical cord blood Mesenchymal Stromal Cells are neuroprotective and promote regeneration in a rat optic tract model. Exp. Neurol. (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 55  Kim HJ, Lee JH, Kim SH: Therapeutic effects of human mesenchymal stem cells for traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma (2009) (Epub ahead of print).Google Scholar
    • 56  Arien-Zakay H, Lecht S, Bercu MM et al.: Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp. Neurol.216(1),83–94 (2009).Crossref, Medline, CASGoogle Scholar
    • 57  Lorrio S, Sobrado M, Arias E, Roda JM, Garcia AG, Lopez MG: Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J. Pharmacol. Exp. Ther.322(2),591–599 (2007).Crossref, Medline, CASGoogle Scholar
    • 58  Yan YP, Sailor KA, Vemuganti R, Dempsey RJ: Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur. J. Neurosci.24(1),45–54 (2006).Crossref, MedlineGoogle Scholar
    • 59  Croft AP, Przyborski SA: Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp. Neurol.216(2),329–341 (2009).Crossref, Medline, CASGoogle Scholar
    • 60  Li Y, Chen J, Zhang CL et al.: Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia49(3),407–417 (2005).Crossref, MedlineGoogle Scholar
    • 61  Chen Q, Long Y, Yuan X et al.: Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J. Neurosci. Res.80(5),611–619 (2005).Crossref, Medline, CASGoogle Scholar
    • 62  Wislet-Gendebien S, Bruyere F, Hans G, Leprince P, Moonen G, Rogister B: Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci.5,33 (2004).Crossref, MedlineGoogle Scholar
    • 63  Perez-Ilzarbe M, Agbulut O, Pelacho B et al.: Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur. J. Heart Fail.10(11),1065–1072 (2008).Crossref, Medline, CASGoogle Scholar
    • 64  Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC: Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428(6983),668–673 (2004).Crossref, Medline, CASGoogle Scholar
    • 65  Murry CE, Soonpaa MH, Reinecke H et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428(6983),664–668 (2004).Crossref, Medline, CASGoogle Scholar
    • 66  Noiseux N, Gnecchi M, Lopez-Ilasaca M et al.: Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther.14(6),840–850 (2006).Crossref, Medline, CASGoogle Scholar
    • 67  Nygren JM, Jovinge S, Breitbach M et al.: Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10(5),494–501 (2004).Crossref, Medline, CASGoogle Scholar
    • 68  Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425(6961),968–973 (2003).Crossref, Medline, CASGoogle Scholar
    • 69  Takahashi M, Li TS, Suzuki R et al.: Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol. Heart Circ. Physiol.291(2),H886–893 (2006).▪ Demonstrates genetic modification of bone marrow-derived mesenchymal stem cells in order to more effectively harness stem cell paracrine actions for tissue repair and regeneration.Crossref, Medline, CASGoogle Scholar
    • 70  Uemura R, Xu M, Ahmad N, Ashraf M: Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res.98(11),1414–1421 (2006).Crossref, Medline, CASGoogle Scholar
    • 71  Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M: In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J. Mol. Cell Cardiol.42(2),441–448 (2007).Crossref, Medline, CASGoogle Scholar
    • 72  Kubal C, Sheth K, Nadal-Ginard B, Galinanes M: Bone marrow cells have a potent anti-ischemic effect against myocardial cell death in humans. J. Thorac. Cardiovasc. Surg.132(5),1112–1118 (2006).Crossref, MedlineGoogle Scholar
    • 73  Korf-Klingebiel M, Kempf T, Sauer T et al.: Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur. Heart J.29(23),2851–2858 (2008).Crossref, MedlineGoogle Scholar
    • 74  Singla DK, Lyons GE, Kamp TJ: Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol.293(2),H1308–H1314 (2007).Crossref, Medline, CASGoogle Scholar
    • 75  Gnecchi M, He H, Liang OD et al.: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11(4),367–368 (2005).Crossref, Medline, CASGoogle Scholar
    • 76  Gnecchi M, He H, Noiseux N et al.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB. J20(6),661–669 (2006).Crossref, Medline, CASGoogle Scholar
    • 77  Kupatt C, Bock-Marquette I, Boekstegers P: Embryonic endothelial progenitor cell-mediated cardioprotection requires Thymosin β4. Trends Cardiovasc. Med.18(6),205–210 (2008).Crossref, Medline, CASGoogle Scholar
    • 78  Burchfield JS, Iwasaki M, Koyanagi M et al.: Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ. Res.103(2),203–211 (2008).Crossref, Medline, CASGoogle Scholar
    • 79  Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E: Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J. Cell. Physiol.219(3),563–571 (2009).▪ Establishes the paracrine actions of embryonic stem cells through their ability to rescue an embryonic lethal defect in the absence of cell engraftment.Crossref, Medline, CASGoogle Scholar
    • 80  Schenke-Layland K, Strem BM, Jordan MC et al.: Adipose tissue-derived cells improve cardiac function following myocardial infarction. J. Surg. Res.153(2),217–223 (2009).Crossref, Medline, CASGoogle Scholar
    • 81  Kamihata H, Matsubara H, Nishiue T et al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation104(9),1046–1052 (2001).Crossref, Medline, CASGoogle Scholar
    • 82  Mourkioti F, Rosenthal N: IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol.26(10),535–542 (2005).Crossref, Medline, CASGoogle Scholar
    • 83  Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W: Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells22(3),405–414 (2004).Crossref, Medline, CASGoogle Scholar
    • 84  Askari AT, Unzek S, Popovic ZB et al.: Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362(9385),697–703 (2003).Crossref, Medline, CASGoogle Scholar
    • 85  Linke A, Muller P, Nurzynska D et al.: Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA102(25),8966–8971 (2005).Crossref, Medline, CASGoogle Scholar
    • 86  Xu X, Xu Z, Xu Y, Cui G: Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron. Artery Dis.16(4),245–255 (2005).Crossref, MedlineGoogle Scholar
    • 87  Ohnishi S, Yasuda T, Kitamura S, Nagaya N: Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells25(5),1166–1177 (2007).Crossref, Medline, CASGoogle Scholar
    • 88  Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N: Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett.581(21),3961–3966 (2007).Crossref, Medline, CASGoogle Scholar
    • 89  Nagaya N, Kangawa K, Itoh T et al.: Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation112(8),1128–1135 (2005).Crossref, MedlineGoogle Scholar
    • 90  Kinnaird T, Stabile E, Burnett MS et al.: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109(12),1543–1549 (2004).Crossref, Medline, CASGoogle Scholar
    • 91  Dib N, Michler RE, Pagani FD et al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation112(12),1748–1755 (2005).Crossref, MedlineGoogle Scholar
    • 92  Siminiak T, Kalawski R, Fiszer D et al.: Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am Heart J148(3),531–537 (2004).Crossref, MedlineGoogle Scholar
    • 93  Smits PC, Van Geuns RJ, Poldermans D et al.: Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol.42(12),2063–2069 (2003).Crossref, MedlineGoogle Scholar
    • 94  Menasche P, Alfieri O, Janssens S et al.: The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation117(9),1189–1200 (2008).Crossref, MedlineGoogle Scholar
    • 95  Wu Y, Chen L, Scott PG, Tredget EE: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells25(10),2648–2659 (2007).Crossref, Medline, CASGoogle Scholar
    • 96  Chettibi S, Ferguson MWJ: Wound repair: an overview. In: Inflammation: Basic Principles and Clinical Correlates. Gallin JI (Ed.). Lippincott, Williams, and Wilkins, Philadelphia, PA, USA 864–881 (1999).Google Scholar
    • 97  Cowin AJ, Brosnan MP, Holmes TM, Ferguson MW: Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev. Dyn.212(3),385–393 (1998).Crossref, Medline, CASGoogle Scholar
    • 98  Lin CD, Allori AC, Macklin JE et al.: Topical lineage-negative progenitor-cell therapy for diabetic wounds. Plast. Reconstr. Surg.122(5),1341–1351 (2008).Crossref, Medline, CASGoogle Scholar
    • 99  Nie C, Yang D, Morris SF: Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med. Hypotheses72(6),679–682 (2009).Crossref, Medline, CASGoogle Scholar
    • 100  Nambu M, Kishimoto S, Nakamura S et al.: Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann. Plast. Surg.62(3),317–321 (2009).Crossref, Medline, CASGoogle Scholar
    • 101  Xing L, Franz MG, Marcelo CL, Smith CA, Marshall VS, Robson MC: Amnion-derived multipotent progenitor cells increase gain of incisional breaking strength and decrease incidence and severity of acute wound failure. J. Burns Wounds7,e5 (2007).MedlineGoogle Scholar
    • 102  Wan DC, Kwan MD, Gupta DM et al.: Global age-dependent differences in gene expression in response to calvarial injury. J. Craniofac. Surg.19(5),1292–1301 (2008).Crossref, MedlineGoogle Scholar
    • 103  Musgrave DS, Bosch P, Lee JY et al.: Ex vivo gene therapy to produce bone using different cell types. Clin. Orthop. Relat. Res.378,290–305 (2000).CrossrefGoogle Scholar
    • 104  Mendoza M, Khanna C: Revisiting the seed and soil in cancer metastasis. Int. J. Biochem. Cell Biol.41(7),1452–1462 (2009).Crossref, Medline, CASGoogle Scholar
    • 105  Erkan M, Kleeff J, Gorbachevski A et al.: Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology132(4),1447–1464 (2007).Crossref, Medline, CASGoogle Scholar
    • 106  Moustakas A, Heldin CH: Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci.98(10),1512–1520 (2007).Crossref, Medline, CASGoogle Scholar
    • 107  Ricciardelli C, Russell DL, Ween MP et al.: Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J. Biol. Chem.282(14),10814–10825 (2007).Crossref, Medline, CASGoogle Scholar
    • 108  Ho IA, Chan KY, Ng WH et al.: Matrix Metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells27(6),1366–1375 (2009).Crossref, Medline, CASGoogle Scholar
    • 109  Alison MR, Lim S, Houghton J-M: Bone marrow-derived cells and epithelial tumours: more than just an inflammatory relationship. Curr. Opin. Oncol.21,77–82 (2008).CrossrefGoogle Scholar
    • 110  Dietrich J, Imitola J, Kesari S: Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat. Clin. Pract. Oncol.5(7),393–404 (2008).Crossref, Medline, CASGoogle Scholar
    • 111  Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F: Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther.15(10),730–738 (2008).Crossref, Medline, CASGoogle Scholar
    • 112  Walter M, Liang S, Ghosh S, Hornsby PJ, Li R: Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 113  Andrae J, Gallini R, Betsholtz C: Role of platelet-derived growth factors in physiology and medicine. Genes Dev.22(10),1276–1312 (2008).Crossref, Medline, CASGoogle Scholar
    • 114  Dittmer A, Hohlfeld K, Lutzkendorf J, Muller LP, Dittmer J: Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10. Cell. Mol. Life Sci. (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 115  Ame-Thomas P, Maby-El Hajjami H, Monvoisin C et al.: Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood109(2),693–702 (2007).Crossref, Medline, CASGoogle Scholar
    • 116  Zhu W, Xu W, Jiang R et al.: Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol.80(3),267–274 (2006).Crossref, Medline, CASGoogle Scholar
    • 117  Djouad F, Plence P, Bony C et al.: Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood102(10),3837–3844 (2003).Crossref, Medline, CASGoogle Scholar
    • 118  Pinilla S, Alt E, Abdul Khalek FJ et al.: Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett. (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 119  Lu YR, Yuan Y, Wang XJ et al.: The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol. Ther.7(2),245–251 (2008).Crossref, Medline, CASGoogle Scholar
    • 120  Baumann M, Krause M, Thames H, Trott K, Zips D: Cancer stem cells and radiotherapy. Int. J. Radiat. Biol.85(5),391–402 (2009).Crossref, Medline, CASGoogle Scholar
    • 121  Fabian A, Barok M, Vereb G, Szollosi J: Die hard: are cancer stem cells the Bruce Willises of tumor biology? Cytometry A75(1),67–74 (2009).Crossref, MedlineGoogle Scholar
    • 122  Jorgensen C: Link between cancer stem cells and adult mesenchymal stromal cells: implications for cancer therapy. Regen. Med.4(2),149–152 (2009).LinkGoogle Scholar
    • 123  Lin T, Jones RJ, Matsui W: Cancer stem cells: relevance to SCT. Bone Marrow Transplant.43(7),517–523 (2009).Crossref, Medline, CASGoogle Scholar
    • 124  Marotta LL, Polyak K: Cancer stem cells: a model in the making. Curr. Opin. Genet. Dev.19(1),44–50 (2009).Crossref, MedlineGoogle Scholar
    • 125  Phesse TJ, Clarke AR: Normal stem cells in cancer prone epithelial tissues. Br. J. Cancer100(2),221–227 (2009).Crossref, Medline, CASGoogle Scholar
    • 126  Trosko JE: Review paper: cancer stem cells and cancer nonstem cells: from adult stem cells or from reprogramming of differentiated somatic cells. Vet. Pathol.46(2),176–193 (2009).Crossref, Medline, CASGoogle Scholar
    • 127  Tu LC, Foltz G, Lin E, Hood L, Tian Q: Targeting stem cells – clinical implications for cancer therapy. Curr. Stem Cell Res. Ther.4(2),147–153 (2009).Crossref, Medline, CASGoogle Scholar
    • 128  Phillips MI, Tang YL: Genetic modification of stem cells for transplantation. Adv. Drug Deliv. Rev.60(2),160–172 (2008).Crossref, Medline, CASGoogle Scholar
    • 129  Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A: Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann. Thorac. Surg.85(3),901–908 (2008).Crossref, MedlineGoogle Scholar
    • 130  Li W, Ma N, Ong LL et al.: Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells25(8),2118–2127 (2007).Crossref, Medline, CASGoogle Scholar
    • 131  Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI: Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol.46(7),1339–1350 (2005).Crossref, Medline, CASGoogle Scholar
    • 132  Bakshi A, Shimizu S, Keck CA et al.: Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur. J. Neurosci.23(8),2119–2134 (2006).Crossref, MedlineGoogle Scholar
    • 133  Tang X, Cai PG, Lin YQ et al.: Genetic engineering neural stem cell modified by lentivirus for repair of spinal cord injury in rats. Chin. Med. Sci. J.21(2),120–124 (2006).Medline, CASGoogle Scholar
    • 134  Cai PQ, Tang X, Lin YQ et al.: The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene. Chin. J. Traumatol.9(1),43–49 (2006).Medline, CASGoogle Scholar
    • 135  Li W, Cai WG, Li CR: Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats. Neurosci. Bull.22(1),34–40 (2006).MedlineGoogle Scholar
    • 136  Kurozumi K, Nakamura K, Tamiya T et al.: Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther.11(1),96–104 (2005).Crossref, Medline, CASGoogle Scholar
    • 137  Kurozumi K, Nakamura K, Tamiya T et al.: BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol. Ther.9(2),189–197 (2004).Crossref, Medline, CASGoogle Scholar
    • 138  Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA: Multipotential marrow stromal cells transduced to produce l-DOPA: engraftment in a rat model of Parkinson’s disease. Hum. Gene Ther.10(15),2539–2549 (1999).Crossref, Medline, CASGoogle Scholar
    • 139  Boison D: Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res. (2009) (Epub ahead of print).Google Scholar
    • 140  Boison D: Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics6(2),278–283 (2009).Crossref, Medline, CASGoogle Scholar
    • 141  Guttinger M, Fedele D, Koch P et al.: Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia46(8),1162–1169 (2005).Crossref, MedlineGoogle Scholar
    • 142  Li T, Ren G, Kaplan Dl, Boison D: Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res.84(2–3),238–241 (2009).Crossref, Medline, CASGoogle Scholar
    • 143  Thompson K: Transplantation of GABA-producing cells for seizure control in models of temporal lobe epilepsy. Neurotherapeutics6(2),284–294 (2009).Crossref, Medline, CASGoogle Scholar
    • 144  Reinlib L, Field L: Cell transplantation as future therapy for cardiovascular disease? A workshop of the National Heart, Lung, and Blood Institute. Circulation101(18),E182–E187 (2000).Crossref, Medline, CASGoogle Scholar
    • 145  Haider HK, Elmadbouh I, Jean-Baptiste M, Ashraf M: Nonviral vector gene modification of stem cells for myocardial repair. Mol. Med.14(1–2),79–86 (2008).Crossref, Medline, CASGoogle Scholar
    • 146  Duan HF, Wu CT, Wu DL et al.: Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol. Ther.8(3),467–474 (2003).Crossref, Medline, CASGoogle Scholar
    • 147  Hattan N, Warltier D, Gu W, Kolz C, Chilian WM, Weihrauch D: Autologous vascular smooth muscle cell-based myocardial gene therapy to induce coronary collateral growth. Am. J. Physiol. Heart Circ. Physiol.287(2),H488–H493 (2004).Crossref, Medline, CASGoogle Scholar
    • 148  Miyagawa S, Sawa Y, Taketani S et al.: Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation105(21),2556–2561 (2002).Crossref, Medline, CASGoogle Scholar
    • 149  Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM: Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J. Clin. Invest.98(10),2209–2217 (1996).Crossref, Medline, CASGoogle Scholar
    • 150  Payne TR, Oshima H, Okada M et al.: A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J. Am. Coll. Cardiol.50(17),1677–1684 (2007).Crossref, Medline, CASGoogle Scholar
    • 151  Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK: Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation104(12 Suppl. 1),I218–I222 (2001).Crossref, Medline, CASGoogle Scholar
    • 152  Yau TM, Li G, Weisel RD et al.: Vascular endothelial growth factor transgene expression in cell-transplanted hearts. J. Thorac. Cardiovasc. Surg.127(4),1180–1187 (2004).Crossref, MedlineGoogle Scholar
    • 153  Ye L, Haider H, Tan R et al.: Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation116(Suppl. 11),I113–I120 (2007).Crossref, Medline, CASGoogle Scholar
    • 154  Zhang M, Mal N, Kiedrowski M et al.: SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J.21(12),3197–3207 (2007).Crossref, Medline, CASGoogle Scholar
    • 155  Mirotsou M, Zhang Z, Deb A et al.: Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. USA104(5),1643–1648 (2007).Crossref, Medline, CASGoogle Scholar
    • 156  Gnecchi M, He H, Melo LG et al.: Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells27(4),971–979 (2009).Crossref, Medline, CASGoogle Scholar
    • 157  Gamradt SC, Lieberman JR: Genetic modification of stem cells to enhance bone repair. Ann. Biomed. Eng.32(1),136–147 (2004).Crossref, MedlineGoogle Scholar
    • 158  Tai K, Pelled G, Sheyn D et al.: Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng. Part A14(10),1709–1720 (2008).Crossref, Medline, CASGoogle Scholar
    • 159  Waese EY, Kandel RA, Stanford WL: Application of stem cells in bone repair. Skeletal Radiol.37(7),601–608 (2008).Crossref, MedlineGoogle Scholar
    • 160  Dickson PV, Hamner JB, Burger RA et al.: Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-β and restricts tumor growth in a murine model of disseminated neuroblastoma. J. Pediatr. Surg.42(1),48–53 (2007).Crossref, MedlineGoogle Scholar
    • 161  Ren C, Kumar S, Chanda D et al.: Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther.15(21),1446–1453 (2008).Crossref, Medline, CASGoogle Scholar
    • 162  Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res.62(13),3603–3608 (2002).Medline, CASGoogle Scholar
    • 163  Kyriakou CA, Yong KL, Benjamin R et al.: Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt’s lymphoma in a murine model. J. Gene Med.8(3),253–264 (2006).Crossref, Medline, CASGoogle Scholar
    • 164  Stagg J, Lejeune L, Paquin A, Galipeau J: Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther.15(6),597–608 (2004).Crossref, Medline, CASGoogle Scholar
    • 165  Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C: Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res.67(13),6304–6313 (2007).Crossref, Medline, CASGoogle Scholar
    • 166  Kucerova L, Matuskova M, Pastorakova A et al.: Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J. Gene Med.10(10),1071–1082 (2008).Crossref, Medline, CASGoogle Scholar
    • 167  You MH, Kim WJ, Shim W et al.: Cytosine deaminase-producing human mesenchymal stem cells mediate an antitumor effect in a mouse xenograft model. J. Gastroenterol. Hepatol. (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 168  Sharp FR, Ran R, Lu A et al.: Hypoxic preconditioning protects against ischemic brain injury. NeuroRx1(1),26–35 (2004).Crossref, MedlineGoogle Scholar
    • 169  He A, Jiang Y, Gui C, Sun Y, Li J, Wang JA: The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can. J. Cardiol.25(6),353–358 (2009).Crossref, Medline, CASGoogle Scholar
    • 170  Creagh EM, Sheehan D, Cotter TG: Heat shock proteins – modulators of apoptosis in tumour cells. Leukemia14(7),1161–1173 (2000).Crossref, Medline, CASGoogle Scholar
    • 171  Mambula SS, Stevenson MA, Ogawa K, Calderwood SK: Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods43(3),168–175 (2007).Crossref, Medline, CASGoogle Scholar
    • 172  Haider H, Ashraf M: Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J. Mol. Cell Cardiol.45(4),554–566 (2008).Crossref, Medline, CASGoogle Scholar
    • 173  Su CY, Chong KY, Chen J, Ryter S, Khardori R, Lai CC: A physiologically relevant hyperthermia selectively activates constitutive hsp70 in H9c2 cardiac myoblasts and confers oxidative protection. J. Mol. Cell Cardiol.31(4),845–855 (1999).Crossref, Medline, CASGoogle Scholar
    • 174  Eberhard J, Zahl A, Dommisch H, Winter J, Acil Y, Jepsen S: Heat shock induces the synthesis of the inflammatory mediator leukotriene β4 in human pulp cells. Int. Endod. J.38(12),882–888 (2005).Crossref, Medline, CASGoogle Scholar
    • 175  Afzal MR, Haider HK, Niagara MI, Jiang S, Ahmed R, Ashraf M: Preconditioning promotes survival an proliferation of mesenchymal stem cells in the infarcted rat heart via activation of NF-κB downstream of PI3K/Akt signaling. Circulation68,116 (2007).Google Scholar
    • 176  Niagara MI, Haider HK, Jiang S, Ashraf M: Short and long term fate of preconditioned skeletal myoblasts in the infarcted heart and the role of IL11 in cytoprotection of preconditioned cells. Circulation133,116 (2007).Google Scholar
    • 177  Niagara MI, Haider H, Jiang S, Ashraf M: Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ. Res.100(4),545–555 (2007).Crossref, Medline, CASGoogle Scholar
    • 178  Wisel S, Khan M, Kuppusamy ML et al.: Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J. Pharmacol. Exp. Ther.329(2),543–550 (2009).Crossref, Medline, CASGoogle Scholar
    • 179  Cizkova D, Rosocha J, Vanicky I, Radonak J, Galik J, Cizek M: Induction of mesenchymal stem cells leads to HSP72 synthesis and higher resistance to oxidative stress. Neurochem. Res.31(8),1011–1020 (2006).Crossref, Medline, CASGoogle Scholar
    • 180  Emohare O, Hafez MI, Sandison A, Coombs RR, Mccarthy ID: Laser-induced thermal stress and the heat shock response in neural cells. Acta Orthop. Scand.75(5),610–617 (2004).Crossref, MedlineGoogle Scholar
    • 181  Ku CH, Johnson PH, Batten P et al.: Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res.71(3),548–556 (2006).Crossref, Medline, CASGoogle Scholar
    • 182  Schumann D, Kujat R, Nerlich M, Angele P: Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed. Mater. Eng.16(Suppl. 4),S37–S52 (2006).Medline, CASGoogle Scholar
    • 183  Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ: Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech.36(8),1087–1096 (2003).Crossref, MedlineGoogle Scholar
    • 184  Ward DF Jr, Salasznyk RM, Klees RF et al.: Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev.16(3),467–480 (2007).Crossref, Medline, CASGoogle Scholar
    • 185  Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv. Cancer Res.100,133–158 (2008).Crossref, MedlineGoogle Scholar
    • 186  Furth ME, Atala A: Stem cell sources to treat diabetes. J. Cell. Biochem.106(4),507–511 (2009).Crossref, Medline, CASGoogle Scholar
    • 187  Gruen L, Grabel L: Concise review: scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells24(10),2162–2169 (2006).Crossref, MedlineGoogle Scholar
    • 188  Xu YX, Chen L, Hou WK et al.: Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats. Transplant. Proc.41(5),1878–1884 (2009).Crossref, Medline, CASGoogle Scholar
    • 189  Xu RX, Chen X, Chen JH, Han Y, Han BM: Mesenchymal stem cells promote cardiomyocyte hypertrophy in vitro through hypoxia-induced paracrine mechanisms. Clin. Exp. Pharmacol. Physiol.36(2),176–180 (2009).Crossref, Medline, CASGoogle Scholar
    • 190  Wei X, Du Z, Zhao L et al.: IFATS collection: The conditioned media of adipose stromal cells protect against hypoxia–ischemia-induced brain damage in neonatal rats. Stem Cells27(2),478–488 (2009).Crossref, Medline, CASGoogle Scholar
    • 191  Cho JA, Park H, Kim HK et al.: Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer115(2),311–323 (2009).Crossref, Medline, CASGoogle Scholar
    • 192  Zheng W, Wang S, Ma D, Tang L, Duan Y, Jin Y: Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment. Tissue Eng. Part A (2009) (Epub ahead of print).Google Scholar
    • 193  Timmers L, Lim SK, Arslan F et al.: Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res.1(2),129–137 (2007).Crossref, Medline, CASGoogle Scholar
    • 194  Gnecchi M, Melo LG: Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol.482,281–294 (2009).Crossref, Medline, CASGoogle Scholar
    • 195  Ekblom P, Lonai P, Talts JF: Expression and biological role of laminin-1. Matrix Biol.22(1),35–47 (2003).Crossref, Medline, CASGoogle Scholar
    • 196  Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM: Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev.85(3),979–1000 (2005).Crossref, Medline, CASGoogle Scholar
    • 197  Li S, Harrison D, Carbonetto S et al.: Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J. Cell Biol.157(7),1279–1290 (2002).Crossref, Medline, CASGoogle Scholar
    • 198  George EL, Baldwin HS, Hynes RO: Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood90(8),3073–3081 (1997).Crossref, Medline, CASGoogle Scholar
    • 199  Glukhova MA, Thiery JP: Fibronectin and integrins in development. Semin. Cancer Biol.4(4),241–249 (1993).Medline, CASGoogle Scholar
    • 200  Brown JC, Timpl R: The collagen superfamily. Int. Arch. Allergy Immunol.107(4),484–490 (1995).Crossref, Medline, CASGoogle Scholar
    • 201  Saika S, Kawashima Y, Miyamoto T et al.: Immunolocalization of prolyl 4-hydroxylase subunits, α-smooth muscle actin, and extracellular matrix components in human lens capsules with lens implants. Exp. Eye Res.66(3),283–294 (1998).Crossref, Medline, CASGoogle Scholar
    • 202  Garcia-Olivas R, Hoebeke J, Castel S et al.: Differential binding of platelet-derived growth factor isoforms to glycosaminoglycans. Histochem. Cell Biol.120(5),371–382 (2003).Crossref, Medline, CASGoogle Scholar
    • 203  Rouet V, Hamma-Kourbali Y, Petit E et al.: A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J. Biol. Chem.280(38),32792–32800 (2005).Crossref, Medline, CASGoogle Scholar
    • 204  Hunter DD, Zhang M, Ferguson JW, Koch M, Brunken WJ: The extracellular matrix component WIF-1 is expressed during, and can modulate, retinal development. Mol. Cell. Neurosci.27(4),477–488 (2004).Crossref, Medline, CASGoogle Scholar
    • 205  Sobajima S, Shimer AL, Chadderdon RC et al.: Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J.5(1),14–23 (2005).Crossref, MedlineGoogle Scholar
    • 206  Badylak SF: Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol.12(3–4),367–377 (2004).Crossref, Medline, CASGoogle Scholar
    • 207  Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF: Identification of extractable growth factors from small intestinal submucosa. J. Cell. Biochem.67(4),478–491 (1997).Crossref, Medline, CASGoogle Scholar
    • 208  Mcdevitt CA, Wildey GM, Cutrone RM: Transforming growth factor-β1 in a sterilized tissue derived from the pig small intestine submucosa. J. Biomed. Mater. Res. A67(2),637–640 (2003).Crossref, MedlineGoogle Scholar
    • 209  Hodde JP, Ernst DM, Hiles MC: An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J. Wound Care14(1),23–25 (2005).Crossref, Medline, CASGoogle Scholar
    • 210  Badylak SF, Tullius R, Kokini K et al.: The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J. Biomed. Mater. Res.29(8),977–985 (1995).Crossref, Medline, CASGoogle Scholar
    • 211  Brown AL, Brook-Allred TT, Waddell JE et al.: Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials26(5),529–543 (2005).Crossref, Medline, CASGoogle Scholar
    • 212  Chen GP, Sato T, Ushida T, Hirochika R, Ochiai N, Tateishi T: Regeneration of cartilage tissue by combination of canine chondrocyte and a hybrid mesh scaffold. Mater. Sci. Eng. C Biomimetic Supramol. Syst.24(3),373–378 (2004).CrossrefGoogle Scholar
    • 213  Dahl SL, Koh J, Prabhakar V, Niklason LE: Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant.12(6),659–666 (2003).CrossrefGoogle Scholar
    • 214  Hopper RA, Woodhouse K, Semple JL: Acellularization of human placenta with preservation of the basement membrane: a potential matrix for tissue engineering. Ann. Plast. Surg.51(6),598–602 (2003).Crossref, MedlineGoogle Scholar
    • 215  Hudson TW, Zawko S, Deister C et al.: Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng.10(11–12),1641–1651 (2004).Crossref, Medline, CASGoogle Scholar
    • 216  Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H: Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann. Thorac. Surg.60(Suppl. 2),S353–S358 (1995).Crossref, Medline, CASGoogle Scholar
    • 217  Abraham GA, Murray J, Billiar K, Sullivan SJ: Evaluation of the porcine intestinal collagen layer as a biomaterial. J. Biomed. Mater. Res.51(3),442–452 (2000).Crossref, Medline, CASGoogle Scholar
    • 218  Wilshaw SP, Kearney JN, Fisher J, Ingham E: Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng.12(8),2117–2129 (2006).Crossref, Medline, CASGoogle Scholar
    • 219  Wei HJ, Chen SC, Chang Y et al.: Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials27(31),5409–5419 (2006).Crossref, Medline, CASGoogle Scholar
    • 220  Pham Q, Kasper F, Mistry A et al.: Analysis of the osteoinductive capacity and angiogenicity of an in vitro generated extracellular matrix. J. Biomed. Mater. Res. Part A (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 221  Ott HC, Matthiesen TS, Goh SK et al.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med.14(2),213–221 (2008).Crossref, Medline, CASGoogle Scholar
    • 222  Badylak S, Obermiller J, Geddes L, Matheny R: Extracellular matrix for myocardial repair. Heart Surg. Forum6(2),E20–E26 (2003).Crossref, MedlineGoogle Scholar
    • 223  Kochupura PY, Azeloglu EU, Kelly DJ et al.: Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation112(Suppl. 9),I144–I149 (2005).Crossref, MedlineGoogle Scholar
    • 224  Chang Y, Chen SC, Wei HJ et al.: Tissue regeneration observed in a porous acellular bovine pericardium used to repair a myocardial defect in the right ventricle of a rat model. J. Thorac. Cardiovasc. Surg.130(3),705–711 (2005).Crossref, MedlineGoogle Scholar
    • 225  Schenke-Layland K, Rofail F, Heydarkhan S et al.: The use of three-dimensional nanostructures to instruct cells to produce extracellular matrix for regenerative medicine strategies. Biomaterials (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 226  Throm AM, Liu WC, Lock CH, Billiar KL: Development of a cell-derived matrix: effects of epidermal growth factor in chemically defined culture. J. Biomed. Mater. Res. A (2009) (Epub ahead of print).Google Scholar
    • 227  Jin CZ, Choi BH, Park SR, Min BH: Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J. Biomed. Mater. Res. A (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 228  Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka RL: Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J. Bone Miner. Res.22(12),1943–1956 (2007).▪ Verifies the complex combination of molecules harbored within stem cell-derived extracellular matrix and the ability of an acellular matrix to elicit a biological response in vivo.Crossref, Medline, CASGoogle Scholar
    • 229  Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG: Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials26(9),971–977 (2005).Crossref, Medline, CASGoogle Scholar
    • 230  Pham QP, Kasper FK, Mistry AS et al.: Analysis of the osteoinductive capacity and angiogenicity of an in vitro generated extracellular matrix. J. Biomed. Mater. Res. A88(2),295–303 (2009).Crossref, MedlineGoogle Scholar
    • 231  Aizman I, Tate CC, Mcgrogan M, Case CC: Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J. Neurosci. Res. (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 232  Nair R, Ngangan AV, Mcdevitt TC: Efficacy of solvent extraction methods for acellularization of embryoid bodies. J. Biomater. Sci. Polym. Ed.19(6),801–819 (2008).Crossref, Medline, CASGoogle Scholar
    • 233  Nair R, Shukla S, Mcdevitt TC: Acellular matrices derived from differentiating embryonic stem cells. J. Biomed. Mater. Res. A87(4),1075–1085 (2008).Crossref, MedlineGoogle Scholar
    • 234  Ngangan AV, Mcdevitt TC: Acellularization of embryoid bodies via physical disruption methods. Biomaterials30(6),1143–1149 (2009).Crossref, Medline, CASGoogle Scholar