Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Papers of special note have been highlighted as: ▪ of interest
Bibliography
- 1 Scadden DT: The stem-cell niche as an entity of action. Nature441(7097),1075–1079 (2006).Crossref, Medline, CAS, Google Scholar
- 2 Kilroy GE, Foster SJ, Wu X et al.: Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and proinflammatory factors. J. Cell. Physiol.212(3),702–709 (2007).Crossref, Medline, CAS, Google Scholar
- 3 Caplan AI: Why are MSCs therapeutic? New data: new insight. J. Pathol.217(2),318–324 (2009).Crossref, Medline, CAS, Google Scholar
- 4 Sarojini H, Estrada R, Lu H et al.: PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J. Cell. Biochem.104(5),1793–1802 (2008).Crossref, Medline, CAS, Google Scholar
- 5 Schinkothe T, Bloch W, Schmidt A: In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev.17(1),199–206 (2008).Crossref, Medline, CAS, Google Scholar
- 6 Liu CH, Hwang SM: Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine32(6),270–279 (2005).Crossref, Medline, CAS, Google Scholar
- 7 Fu X, Li H: Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res.335(2),317–321 (2009).Crossref, Medline, Google Scholar
- 8 Ilancheran S, Moodley Y, Manuelpillai U: Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta30(1),2–10 (2009).Crossref, Medline, CAS, Google Scholar
- 9 Trivedi P, Hematti P: Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp. Hematol.36(3),350–359 (2008).Medline, CAS, Google Scholar
- 10 Zhang W: Mesenchymal stem cells in cancer: friends or foes. Cancer Biol. Ther.7(2),252–254 (2008).Crossref, Medline, CAS, Google Scholar
- 11 Bochev I, Elmadjian G, Kyurkchiev D et al.: Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol. Int.32(4),384–393 (2008).Crossref, Medline, CAS, Google Scholar
- 12 Yen BL, Chang CJ, Chen YC, Hu H-I, Bai C-H, Yen M-L: Human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells27,451–456 (2009).Crossref, Medline, Google Scholar
- 13 Bartholomew A, Sturgeon C, Siatskas M et al.: Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol.30(1),42–48 (2002).Crossref, Medline, Google Scholar
- 14 Nasef A, Chapel A, Mazurier C et al.: Identification of IL-10 and TGF-β transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Exp.13(4–5),217–226 (2007).Crossref, Medline, Google Scholar
- 15 English K, Barry FP, Field-Corbett CP, Mahon BP: IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett.110(2),91–100 (2007).Crossref, Medline, CAS, Google Scholar
- 16 Sato K, Ozaki K, Oh I et al.: Nitric oxide plays a critical role in suppression of T cell proliferation by mesenchymal stem cells. Blood109(1),228–234 (2007).Crossref, Medline, CAS, Google Scholar
- 17 Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D: Human bone marrow stromal cells inhibit allogeneic T cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood103(12),4619–4621 (2004).Crossref, Medline, CAS, Google Scholar
- 18 Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC: Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia19(9),1597–1604 (2005).Crossref, Medline, CAS, Google Scholar
- 19 Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood105(4),1815–1822 (2005).▪ Details interactions between bone marrow-derived mesenchymal stem cells and immune cells and elucidates mechanisms likely involved in mesenchymal stem cell modulation of inflammation.Crossref, Medline, CAS, Google Scholar
- 20 Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P: Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol.171(7),3426–3434 (2003).Crossref, Medline, CAS, Google Scholar
- 21 Yang SH, Park MJ, Yoon IH et al.: Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp. Mol. Med.41(5),315–324 (2009).Crossref, Medline, CAS, Google Scholar
- 22 Asari S, Itakura S, Ferreri K et al.: Mesenchymal stem cells suppress B-cell terminal differentiation. Exp. Hematol.37(5),604–615 (2009).Crossref, Medline, CAS, Google Scholar
- 23 Rasmusson I, Le Blanc K, Sundberg B, Ringden O: Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand. J. Immunol.65(4),336–343 (2007).Crossref, Medline, CAS, Google Scholar
- 24 Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F: Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation83(1),71–76 (2007).Crossref, Medline, Google Scholar
- 25 Djouad F, Charbonnier LM, Bouffi C et al.: Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells25(8),2025–2032 (2007).Crossref, Medline, CAS, Google Scholar
- 26 Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L: MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood113(26),6576–6583 (2009).Crossref, Medline, CAS, Google Scholar
- 27 Selmani Z, Naji A, Gaiffe E et al.: HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation87(Suppl. 9),S62–S66 (2009).Crossref, Medline, CAS, Google Scholar
- 28 Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L: Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood107(4),1484–1490 (2006).Crossref, Medline, CAS, Google Scholar
- 29 Ortiz LA, Dutreil M, Fattman C et al.: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl Acad. Sci. USA104(26),11002–11007 (2007).Crossref, Medline, CAS, Google Scholar
- 30 Raffaghello L, Bianchi G, Bertolotto M et al.: Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells26(1),151–162 (2008).Crossref, Medline, CAS, Google Scholar
- 31 Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV: Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation17(4),331–340 (1974).Crossref, Medline, CAS, Google Scholar
- 32 Ren G, Zhang L, Zhao X et al.: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell2(2),141–150 (2008).Crossref, Medline, CAS, Google Scholar
- 33 Koc ON, Gerson Sl, Cooper BW et al.: Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol.18(2),307–316 (2000).Crossref, Medline, CAS, Google Scholar
- 34 Le Blanc K, Frassoni F, Ball L et al.: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a Phase II study. Lancet371(9624),1579–1586 (2008).Crossref, Medline, CAS, Google Scholar
- 35 Le Blanc K, Rasmusson I, Sundberg B et al.: Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet363(9419),1439–1441 (2004).Crossref, Medline, Google Scholar
- 36 Ringden O, Uzunel M, Rasmusson I et al.: Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation81(10),1390–1397 (2006).Crossref, Medline, Google Scholar
- 37 Polchert D, Sobinsky J, Douglas G et al.: IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur. J. Immunol.38(6),1745–1755 (2008).Crossref, Medline, CAS, Google Scholar
- 38 Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G: Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum.56(4),1175–1186 (2007).Crossref, Medline, CAS, Google Scholar
- 39 Gerdoni E, Gallo B, Casazza S et al.: Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann. Neurol.61(3),219–227 (2007).Crossref, Medline, CAS, Google Scholar
- 40 Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M: Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut58(7),929–939 (2009).Crossref, Medline, CAS, Google Scholar
- 41 Gonzalez-Rey E, Gonzalez MA, Varela N et al.: Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann. Rheum. Dis. (2009) (Epub ahead of print).Google Scholar
- 42 Haller MJ, Viener HL, Wasserfall C, Brusko T, Atkinson MA, Schatz DA: Autologous umbilical cord blood infusion for Type 1 diabetes. Exp. Hematol.36(6),710–715 (2008).Crossref, Medline, CAS, Google Scholar
- 43 Gennery AR, Cant AJ: Cord blood stem cell transplantation in primary immune deficiencies. Curr. Opin. Allergy Clin. Immunol.7(6),528–534 (2007).Crossref, Medline, Google Scholar
- 44 Tyndall A, Gratwohl A: Adult stem cell transplantation in autoimmune disease. Curr. Opin. Hematol.16(4),285–291 (2009).Crossref, Medline, CAS, Google Scholar
- 45 Tyndall A, Uccelli A: Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplant.43(11),821–828 (2009).Crossref, Medline, CAS, Google Scholar
- 46 Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia21(2),304–310 (2007).Crossref, Medline, CAS, Google Scholar
- 47 Xu L, Yan J, Chen D et al.: Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation82(7),865–875 (2006).Crossref, Medline, Google Scholar
- 48 Corti S, Locatelli F, Papadimitriou D et al.: Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain130(Pt 5),1289–1305 (2007).Crossref, Medline, Google Scholar
- 49 Lu P, Jones LL, Snyder EY, Tuszynski MH: Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol.181(2),115–129 (2003).Crossref, Medline, CAS, Google Scholar
- 50 Yan J, Welsh AM, Bora SH, Snyder EY, Koliatsos VE: Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J. Comp. Neurol.480(1),101–114 (2004).Crossref, Medline, Google Scholar
- 51 Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG: Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol.198(1),54–64 (2006).Crossref, Medline, CAS, Google Scholar
- 52 Kim YJ, Park HJ, Lee G et al.: Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia57(1),13–23 (2009).Crossref, Medline, Google Scholar
- 53 Park HJ, Lee PH, Bang OY, Lee G, Ahn YH: Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J. Neurochem.107(1),141–151 (2008).Crossref, Medline, CAS, Google Scholar
- 54 Zwart I, Hill AJ, Al-Allaf F et al.: Umbilical cord blood Mesenchymal Stromal Cells are neuroprotective and promote regeneration in a rat optic tract model. Exp. Neurol. (2009) (Epub ahead of print).Medline, Google Scholar
- 55 Kim HJ, Lee JH, Kim SH: Therapeutic effects of human mesenchymal stem cells for traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma (2009) (Epub ahead of print).Google Scholar
- 56 Arien-Zakay H, Lecht S, Bercu MM et al.: Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp. Neurol.216(1),83–94 (2009).Crossref, Medline, CAS, Google Scholar
- 57 Lorrio S, Sobrado M, Arias E, Roda JM, Garcia AG, Lopez MG: Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J. Pharmacol. Exp. Ther.322(2),591–599 (2007).Crossref, Medline, CAS, Google Scholar
- 58 Yan YP, Sailor KA, Vemuganti R, Dempsey RJ: Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur. J. Neurosci.24(1),45–54 (2006).Crossref, Medline, Google Scholar
- 59 Croft AP, Przyborski SA: Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp. Neurol.216(2),329–341 (2009).Crossref, Medline, CAS, Google Scholar
- 60 Li Y, Chen J, Zhang CL et al.: Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia49(3),407–417 (2005).Crossref, Medline, Google Scholar
- 61 Chen Q, Long Y, Yuan X et al.: Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J. Neurosci. Res.80(5),611–619 (2005).Crossref, Medline, CAS, Google Scholar
- 62 Wislet-Gendebien S, Bruyere F, Hans G, Leprince P, Moonen G, Rogister B: Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci.5,33 (2004).Crossref, Medline, Google Scholar
- 63 Perez-Ilzarbe M, Agbulut O, Pelacho B et al.: Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur. J. Heart Fail.10(11),1065–1072 (2008).Crossref, Medline, CAS, Google Scholar
- 64 Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC: Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428(6983),668–673 (2004).Crossref, Medline, CAS, Google Scholar
- 65 Murry CE, Soonpaa MH, Reinecke H et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428(6983),664–668 (2004).Crossref, Medline, CAS, Google Scholar
- 66 Noiseux N, Gnecchi M, Lopez-Ilasaca M et al.: Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther.14(6),840–850 (2006).Crossref, Medline, CAS, Google Scholar
- 67 Nygren JM, Jovinge S, Breitbach M et al.: Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10(5),494–501 (2004).Crossref, Medline, CAS, Google Scholar
- 68 Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425(6961),968–973 (2003).Crossref, Medline, CAS, Google Scholar
- 69 Takahashi M, Li TS, Suzuki R et al.: Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol. Heart Circ. Physiol.291(2),H886–893 (2006).▪ Demonstrates genetic modification of bone marrow-derived mesenchymal stem cells in order to more effectively harness stem cell paracrine actions for tissue repair and regeneration.Crossref, Medline, CAS, Google Scholar
- 70 Uemura R, Xu M, Ahmad N, Ashraf M: Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res.98(11),1414–1421 (2006).Crossref, Medline, CAS, Google Scholar
- 71 Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M: In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J. Mol. Cell Cardiol.42(2),441–448 (2007).Crossref, Medline, CAS, Google Scholar
- 72 Kubal C, Sheth K, Nadal-Ginard B, Galinanes M: Bone marrow cells have a potent anti-ischemic effect against myocardial cell death in humans. J. Thorac. Cardiovasc. Surg.132(5),1112–1118 (2006).Crossref, Medline, Google Scholar
- 73 Korf-Klingebiel M, Kempf T, Sauer T et al.: Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur. Heart J.29(23),2851–2858 (2008).Crossref, Medline, Google Scholar
- 74 Singla DK, Lyons GE, Kamp TJ: Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol.293(2),H1308–H1314 (2007).Crossref, Medline, CAS, Google Scholar
- 75 Gnecchi M, He H, Liang OD et al.: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11(4),367–368 (2005).Crossref, Medline, CAS, Google Scholar
- 76 Gnecchi M, He H, Noiseux N et al.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB. J20(6),661–669 (2006).Crossref, Medline, CAS, Google Scholar
- 77 Kupatt C, Bock-Marquette I, Boekstegers P: Embryonic endothelial progenitor cell-mediated cardioprotection requires Thymosin β4. Trends Cardiovasc. Med.18(6),205–210 (2008).Crossref, Medline, CAS, Google Scholar
- 78 Burchfield JS, Iwasaki M, Koyanagi M et al.: Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ. Res.103(2),203–211 (2008).Crossref, Medline, CAS, Google Scholar
- 79 Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E: Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J. Cell. Physiol.219(3),563–571 (2009).▪ Establishes the paracrine actions of embryonic stem cells through their ability to rescue an embryonic lethal defect in the absence of cell engraftment.Crossref, Medline, CAS, Google Scholar
- 80 Schenke-Layland K, Strem BM, Jordan MC et al.: Adipose tissue-derived cells improve cardiac function following myocardial infarction. J. Surg. Res.153(2),217–223 (2009).Crossref, Medline, CAS, Google Scholar
- 81 Kamihata H, Matsubara H, Nishiue T et al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation104(9),1046–1052 (2001).Crossref, Medline, CAS, Google Scholar
- 82 Mourkioti F, Rosenthal N: IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol.26(10),535–542 (2005).Crossref, Medline, CAS, Google Scholar
- 83 Neuss S, Becher E, Woltje M, Tietze L, Jahnen-Dechent W: Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells22(3),405–414 (2004).Crossref, Medline, CAS, Google Scholar
- 84 Askari AT, Unzek S, Popovic ZB et al.: Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362(9385),697–703 (2003).Crossref, Medline, CAS, Google Scholar
- 85 Linke A, Muller P, Nurzynska D et al.: Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA102(25),8966–8971 (2005).Crossref, Medline, CAS, Google Scholar
- 86 Xu X, Xu Z, Xu Y, Cui G: Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron. Artery Dis.16(4),245–255 (2005).Crossref, Medline, Google Scholar
- 87 Ohnishi S, Yasuda T, Kitamura S, Nagaya N: Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells25(5),1166–1177 (2007).Crossref, Medline, CAS, Google Scholar
- 88 Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N: Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett.581(21),3961–3966 (2007).Crossref, Medline, CAS, Google Scholar
- 89 Nagaya N, Kangawa K, Itoh T et al.: Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation112(8),1128–1135 (2005).Crossref, Medline, Google Scholar
- 90 Kinnaird T, Stabile E, Burnett MS et al.: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109(12),1543–1549 (2004).Crossref, Medline, CAS, Google Scholar
- 91 Dib N, Michler RE, Pagani FD et al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation112(12),1748–1755 (2005).Crossref, Medline, Google Scholar
- 92 Siminiak T, Kalawski R, Fiszer D et al.: Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am Heart J148(3),531–537 (2004).Crossref, Medline, Google Scholar
- 93 Smits PC, Van Geuns RJ, Poldermans D et al.: Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol.42(12),2063–2069 (2003).Crossref, Medline, Google Scholar
- 94 Menasche P, Alfieri O, Janssens S et al.: The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation117(9),1189–1200 (2008).Crossref, Medline, Google Scholar
- 95 Wu Y, Chen L, Scott PG, Tredget EE: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells25(10),2648–2659 (2007).Crossref, Medline, CAS, Google Scholar
- 96 Chettibi S, Ferguson MWJ: Wound repair: an overview. In: Inflammation: Basic Principles and Clinical Correlates. Gallin JI (Ed.). Lippincott, Williams, and Wilkins, Philadelphia, PA, USA 864–881 (1999).Google Scholar
- 97 Cowin AJ, Brosnan MP, Holmes TM, Ferguson MW: Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev. Dyn.212(3),385–393 (1998).Crossref, Medline, CAS, Google Scholar
- 98 Lin CD, Allori AC, Macklin JE et al.: Topical lineage-negative progenitor-cell therapy for diabetic wounds. Plast. Reconstr. Surg.122(5),1341–1351 (2008).Crossref, Medline, CAS, Google Scholar
- 99 Nie C, Yang D, Morris SF: Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med. Hypotheses72(6),679–682 (2009).Crossref, Medline, CAS, Google Scholar
- 100 Nambu M, Kishimoto S, Nakamura S et al.: Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann. Plast. Surg.62(3),317–321 (2009).Crossref, Medline, CAS, Google Scholar
- 101 Xing L, Franz MG, Marcelo CL, Smith CA, Marshall VS, Robson MC: Amnion-derived multipotent progenitor cells increase gain of incisional breaking strength and decrease incidence and severity of acute wound failure. J. Burns Wounds7,e5 (2007).Medline, Google Scholar
- 102 Wan DC, Kwan MD, Gupta DM et al.: Global age-dependent differences in gene expression in response to calvarial injury. J. Craniofac. Surg.19(5),1292–1301 (2008).Crossref, Medline, Google Scholar
- 103 Musgrave DS, Bosch P, Lee JY et al.: Ex vivo gene therapy to produce bone using different cell types. Clin. Orthop. Relat. Res.378,290–305 (2000).Crossref, Google Scholar
- 104 Mendoza M, Khanna C: Revisiting the seed and soil in cancer metastasis. Int. J. Biochem. Cell Biol.41(7),1452–1462 (2009).Crossref, Medline, CAS, Google Scholar
- 105 Erkan M, Kleeff J, Gorbachevski A et al.: Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology132(4),1447–1464 (2007).Crossref, Medline, CAS, Google Scholar
- 106 Moustakas A, Heldin CH: Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci.98(10),1512–1520 (2007).Crossref, Medline, CAS, Google Scholar
- 107 Ricciardelli C, Russell DL, Ween MP et al.: Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J. Biol. Chem.282(14),10814–10825 (2007).Crossref, Medline, CAS, Google Scholar
- 108 Ho IA, Chan KY, Ng WH et al.: Matrix Metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells27(6),1366–1375 (2009).Crossref, Medline, CAS, Google Scholar
- 109 Alison MR, Lim S, Houghton J-M: Bone marrow-derived cells and epithelial tumours: more than just an inflammatory relationship. Curr. Opin. Oncol.21,77–82 (2008).Crossref, Google Scholar
- 110 Dietrich J, Imitola J, Kesari S: Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat. Clin. Pract. Oncol.5(7),393–404 (2008).Crossref, Medline, CAS, Google Scholar
- 111 Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F: Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther.15(10),730–738 (2008).Crossref, Medline, CAS, Google Scholar
- 112 Walter M, Liang S, Ghosh S, Hornsby PJ, Li R: Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene (2009) (Epub ahead of print).Medline, Google Scholar
- 113 Andrae J, Gallini R, Betsholtz C: Role of platelet-derived growth factors in physiology and medicine. Genes Dev.22(10),1276–1312 (2008).Crossref, Medline, CAS, Google Scholar
- 114 Dittmer A, Hohlfeld K, Lutzkendorf J, Muller LP, Dittmer J: Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10. Cell. Mol. Life Sci. (2009) (Epub ahead of print).Medline, Google Scholar
- 115 Ame-Thomas P, Maby-El Hajjami H, Monvoisin C et al.: Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood109(2),693–702 (2007).Crossref, Medline, CAS, Google Scholar
- 116 Zhu W, Xu W, Jiang R et al.: Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol.80(3),267–274 (2006).Crossref, Medline, CAS, Google Scholar
- 117 Djouad F, Plence P, Bony C et al.: Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood102(10),3837–3844 (2003).Crossref, Medline, CAS, Google Scholar
- 118 Pinilla S, Alt E, Abdul Khalek FJ et al.: Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett. (2009) (Epub ahead of print).Medline, Google Scholar
- 119 Lu YR, Yuan Y, Wang XJ et al.: The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol. Ther.7(2),245–251 (2008).Crossref, Medline, CAS, Google Scholar
- 120 Baumann M, Krause M, Thames H, Trott K, Zips D: Cancer stem cells and radiotherapy. Int. J. Radiat. Biol.85(5),391–402 (2009).Crossref, Medline, CAS, Google Scholar
- 121 Fabian A, Barok M, Vereb G, Szollosi J: Die hard: are cancer stem cells the Bruce Willises of tumor biology? Cytometry A75(1),67–74 (2009).Crossref, Medline, Google Scholar
- 122 Jorgensen C: Link between cancer stem cells and adult mesenchymal stromal cells: implications for cancer therapy. Regen. Med.4(2),149–152 (2009).Link, Google Scholar
- 123 Lin T, Jones RJ, Matsui W: Cancer stem cells: relevance to SCT. Bone Marrow Transplant.43(7),517–523 (2009).Crossref, Medline, CAS, Google Scholar
- 124 Marotta LL, Polyak K: Cancer stem cells: a model in the making. Curr. Opin. Genet. Dev.19(1),44–50 (2009).Crossref, Medline, Google Scholar
- 125 Phesse TJ, Clarke AR: Normal stem cells in cancer prone epithelial tissues. Br. J. Cancer100(2),221–227 (2009).Crossref, Medline, CAS, Google Scholar
- 126 Trosko JE: Review paper: cancer stem cells and cancer nonstem cells: from adult stem cells or from reprogramming of differentiated somatic cells. Vet. Pathol.46(2),176–193 (2009).Crossref, Medline, CAS, Google Scholar
- 127 Tu LC, Foltz G, Lin E, Hood L, Tian Q: Targeting stem cells – clinical implications for cancer therapy. Curr. Stem Cell Res. Ther.4(2),147–153 (2009).Crossref, Medline, CAS, Google Scholar
- 128 Phillips MI, Tang YL: Genetic modification of stem cells for transplantation. Adv. Drug Deliv. Rev.60(2),160–172 (2008).Crossref, Medline, CAS, Google Scholar
- 129 Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A: Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann. Thorac. Surg.85(3),901–908 (2008).Crossref, Medline, Google Scholar
- 130 Li W, Ma N, Ong LL et al.: Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells25(8),2118–2127 (2007).Crossref, Medline, CAS, Google Scholar
- 131 Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI: Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol.46(7),1339–1350 (2005).Crossref, Medline, CAS, Google Scholar
- 132 Bakshi A, Shimizu S, Keck CA et al.: Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur. J. Neurosci.23(8),2119–2134 (2006).Crossref, Medline, Google Scholar
- 133 Tang X, Cai PG, Lin YQ et al.: Genetic engineering neural stem cell modified by lentivirus for repair of spinal cord injury in rats. Chin. Med. Sci. J.21(2),120–124 (2006).Medline, CAS, Google Scholar
- 134 Cai PQ, Tang X, Lin YQ et al.: The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene. Chin. J. Traumatol.9(1),43–49 (2006).Medline, CAS, Google Scholar
- 135 Li W, Cai WG, Li CR: Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats. Neurosci. Bull.22(1),34–40 (2006).Medline, Google Scholar
- 136 Kurozumi K, Nakamura K, Tamiya T et al.: Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther.11(1),96–104 (2005).Crossref, Medline, CAS, Google Scholar
- 137 Kurozumi K, Nakamura K, Tamiya T et al.: BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol. Ther.9(2),189–197 (2004).Crossref, Medline, CAS, Google Scholar
- 138 Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA: Multipotential marrow stromal cells transduced to produce l-DOPA: engraftment in a rat model of Parkinson’s disease. Hum. Gene Ther.10(15),2539–2549 (1999).Crossref, Medline, CAS, Google Scholar
- 139 Boison D: Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res. (2009) (Epub ahead of print).Google Scholar
- 140 Boison D: Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics6(2),278–283 (2009).Crossref, Medline, CAS, Google Scholar
- 141 Guttinger M, Fedele D, Koch P et al.: Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia46(8),1162–1169 (2005).Crossref, Medline, Google Scholar
- 142 Li T, Ren G, Kaplan Dl, Boison D: Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res.84(2–3),238–241 (2009).Crossref, Medline, CAS, Google Scholar
- 143 Thompson K: Transplantation of GABA-producing cells for seizure control in models of temporal lobe epilepsy. Neurotherapeutics6(2),284–294 (2009).Crossref, Medline, CAS, Google Scholar
- 144 Reinlib L, Field L: Cell transplantation as future therapy for cardiovascular disease? A workshop of the National Heart, Lung, and Blood Institute. Circulation101(18),E182–E187 (2000).Crossref, Medline, CAS, Google Scholar
- 145 Haider HK, Elmadbouh I, Jean-Baptiste M, Ashraf M: Nonviral vector gene modification of stem cells for myocardial repair. Mol. Med.14(1–2),79–86 (2008).Crossref, Medline, CAS, Google Scholar
- 146 Duan HF, Wu CT, Wu DL et al.: Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol. Ther.8(3),467–474 (2003).Crossref, Medline, CAS, Google Scholar
- 147 Hattan N, Warltier D, Gu W, Kolz C, Chilian WM, Weihrauch D: Autologous vascular smooth muscle cell-based myocardial gene therapy to induce coronary collateral growth. Am. J. Physiol. Heart Circ. Physiol.287(2),H488–H493 (2004).Crossref, Medline, CAS, Google Scholar
- 148 Miyagawa S, Sawa Y, Taketani S et al.: Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation105(21),2556–2561 (2002).Crossref, Medline, CAS, Google Scholar
- 149 Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM: Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J. Clin. Invest.98(10),2209–2217 (1996).Crossref, Medline, CAS, Google Scholar
- 150 Payne TR, Oshima H, Okada M et al.: A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J. Am. Coll. Cardiol.50(17),1677–1684 (2007).Crossref, Medline, CAS, Google Scholar
- 151 Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK: Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation104(12 Suppl. 1),I218–I222 (2001).Crossref, Medline, CAS, Google Scholar
- 152 Yau TM, Li G, Weisel RD et al.: Vascular endothelial growth factor transgene expression in cell-transplanted hearts. J. Thorac. Cardiovasc. Surg.127(4),1180–1187 (2004).Crossref, Medline, Google Scholar
- 153 Ye L, Haider H, Tan R et al.: Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation116(Suppl. 11),I113–I120 (2007).Crossref, Medline, CAS, Google Scholar
- 154 Zhang M, Mal N, Kiedrowski M et al.: SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J.21(12),3197–3207 (2007).Crossref, Medline, CAS, Google Scholar
- 155 Mirotsou M, Zhang Z, Deb A et al.: Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. USA104(5),1643–1648 (2007).Crossref, Medline, CAS, Google Scholar
- 156 Gnecchi M, He H, Melo LG et al.: Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells27(4),971–979 (2009).Crossref, Medline, CAS, Google Scholar
- 157 Gamradt SC, Lieberman JR: Genetic modification of stem cells to enhance bone repair. Ann. Biomed. Eng.32(1),136–147 (2004).Crossref, Medline, Google Scholar
- 158 Tai K, Pelled G, Sheyn D et al.: Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng. Part A14(10),1709–1720 (2008).Crossref, Medline, CAS, Google Scholar
- 159 Waese EY, Kandel RA, Stanford WL: Application of stem cells in bone repair. Skeletal Radiol.37(7),601–608 (2008).Crossref, Medline, Google Scholar
- 160 Dickson PV, Hamner JB, Burger RA et al.: Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-β and restricts tumor growth in a murine model of disseminated neuroblastoma. J. Pediatr. Surg.42(1),48–53 (2007).Crossref, Medline, Google Scholar
- 161 Ren C, Kumar S, Chanda D et al.: Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther.15(21),1446–1453 (2008).Crossref, Medline, CAS, Google Scholar
- 162 Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res.62(13),3603–3608 (2002).Medline, CAS, Google Scholar
- 163 Kyriakou CA, Yong KL, Benjamin R et al.: Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt’s lymphoma in a murine model. J. Gene Med.8(3),253–264 (2006).Crossref, Medline, CAS, Google Scholar
- 164 Stagg J, Lejeune L, Paquin A, Galipeau J: Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther.15(6),597–608 (2004).Crossref, Medline, CAS, Google Scholar
- 165 Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C: Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res.67(13),6304–6313 (2007).Crossref, Medline, CAS, Google Scholar
- 166 Kucerova L, Matuskova M, Pastorakova A et al.: Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J. Gene Med.10(10),1071–1082 (2008).Crossref, Medline, CAS, Google Scholar
- 167 You MH, Kim WJ, Shim W et al.: Cytosine deaminase-producing human mesenchymal stem cells mediate an antitumor effect in a mouse xenograft model. J. Gastroenterol. Hepatol. (2009) (Epub ahead of print).Medline, Google Scholar
- 168 Sharp FR, Ran R, Lu A et al.: Hypoxic preconditioning protects against ischemic brain injury. NeuroRx1(1),26–35 (2004).Crossref, Medline, Google Scholar
- 169 He A, Jiang Y, Gui C, Sun Y, Li J, Wang JA: The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can. J. Cardiol.25(6),353–358 (2009).Crossref, Medline, CAS, Google Scholar
- 170 Creagh EM, Sheehan D, Cotter TG: Heat shock proteins – modulators of apoptosis in tumour cells. Leukemia14(7),1161–1173 (2000).Crossref, Medline, CAS, Google Scholar
- 171 Mambula SS, Stevenson MA, Ogawa K, Calderwood SK: Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods43(3),168–175 (2007).Crossref, Medline, CAS, Google Scholar
- 172 Haider H, Ashraf M: Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J. Mol. Cell Cardiol.45(4),554–566 (2008).Crossref, Medline, CAS, Google Scholar
- 173 Su CY, Chong KY, Chen J, Ryter S, Khardori R, Lai CC: A physiologically relevant hyperthermia selectively activates constitutive hsp70 in H9c2 cardiac myoblasts and confers oxidative protection. J. Mol. Cell Cardiol.31(4),845–855 (1999).Crossref, Medline, CAS, Google Scholar
- 174 Eberhard J, Zahl A, Dommisch H, Winter J, Acil Y, Jepsen S: Heat shock induces the synthesis of the inflammatory mediator leukotriene β4 in human pulp cells. Int. Endod. J.38(12),882–888 (2005).Crossref, Medline, CAS, Google Scholar
- 175 Afzal MR, Haider HK, Niagara MI, Jiang S, Ahmed R, Ashraf M: Preconditioning promotes survival an proliferation of mesenchymal stem cells in the infarcted rat heart via activation of NF-κB downstream of PI3K/Akt signaling. Circulation68,116 (2007).Google Scholar
- 176 Niagara MI, Haider HK, Jiang S, Ashraf M: Short and long term fate of preconditioned skeletal myoblasts in the infarcted heart and the role of IL11 in cytoprotection of preconditioned cells. Circulation133,116 (2007).Google Scholar
- 177 Niagara MI, Haider H, Jiang S, Ashraf M: Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ. Res.100(4),545–555 (2007).Crossref, Medline, CAS, Google Scholar
- 178 Wisel S, Khan M, Kuppusamy ML et al.: Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J. Pharmacol. Exp. Ther.329(2),543–550 (2009).Crossref, Medline, CAS, Google Scholar
- 179 Cizkova D, Rosocha J, Vanicky I, Radonak J, Galik J, Cizek M: Induction of mesenchymal stem cells leads to HSP72 synthesis and higher resistance to oxidative stress. Neurochem. Res.31(8),1011–1020 (2006).Crossref, Medline, CAS, Google Scholar
- 180 Emohare O, Hafez MI, Sandison A, Coombs RR, Mccarthy ID: Laser-induced thermal stress and the heat shock response in neural cells. Acta Orthop. Scand.75(5),610–617 (2004).Crossref, Medline, Google Scholar
- 181 Ku CH, Johnson PH, Batten P et al.: Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res.71(3),548–556 (2006).Crossref, Medline, CAS, Google Scholar
- 182 Schumann D, Kujat R, Nerlich M, Angele P: Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed. Mater. Eng.16(Suppl. 4),S37–S52 (2006).Medline, CAS, Google Scholar
- 183 Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ: Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech.36(8),1087–1096 (2003).Crossref, Medline, Google Scholar
- 184 Ward DF Jr, Salasznyk RM, Klees RF et al.: Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev.16(3),467–480 (2007).Crossref, Medline, CAS, Google Scholar
- 185 Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv. Cancer Res.100,133–158 (2008).Crossref, Medline, Google Scholar
- 186 Furth ME, Atala A: Stem cell sources to treat diabetes. J. Cell. Biochem.106(4),507–511 (2009).Crossref, Medline, CAS, Google Scholar
- 187 Gruen L, Grabel L: Concise review: scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells24(10),2162–2169 (2006).Crossref, Medline, Google Scholar
- 188 Xu YX, Chen L, Hou WK et al.: Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats. Transplant. Proc.41(5),1878–1884 (2009).Crossref, Medline, CAS, Google Scholar
- 189 Xu RX, Chen X, Chen JH, Han Y, Han BM: Mesenchymal stem cells promote cardiomyocyte hypertrophy in vitro through hypoxia-induced paracrine mechanisms. Clin. Exp. Pharmacol. Physiol.36(2),176–180 (2009).Crossref, Medline, CAS, Google Scholar
- 190 Wei X, Du Z, Zhao L et al.: IFATS collection: The conditioned media of adipose stromal cells protect against hypoxia–ischemia-induced brain damage in neonatal rats. Stem Cells27(2),478–488 (2009).Crossref, Medline, CAS, Google Scholar
- 191 Cho JA, Park H, Kim HK et al.: Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer115(2),311–323 (2009).Crossref, Medline, CAS, Google Scholar
- 192 Zheng W, Wang S, Ma D, Tang L, Duan Y, Jin Y: Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment. Tissue Eng. Part A (2009) (Epub ahead of print).Google Scholar
- 193 Timmers L, Lim SK, Arslan F et al.: Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res.1(2),129–137 (2007).Crossref, Medline, CAS, Google Scholar
- 194 Gnecchi M, Melo LG: Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol.482,281–294 (2009).Crossref, Medline, CAS, Google Scholar
- 195 Ekblom P, Lonai P, Talts JF: Expression and biological role of laminin-1. Matrix Biol.22(1),35–47 (2003).Crossref, Medline, CAS, Google Scholar
- 196 Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM: Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev.85(3),979–1000 (2005).Crossref, Medline, CAS, Google Scholar
- 197 Li S, Harrison D, Carbonetto S et al.: Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J. Cell Biol.157(7),1279–1290 (2002).Crossref, Medline, CAS, Google Scholar
- 198 George EL, Baldwin HS, Hynes RO: Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood90(8),3073–3081 (1997).Crossref, Medline, CAS, Google Scholar
- 199 Glukhova MA, Thiery JP: Fibronectin and integrins in development. Semin. Cancer Biol.4(4),241–249 (1993).Medline, CAS, Google Scholar
- 200 Brown JC, Timpl R: The collagen superfamily. Int. Arch. Allergy Immunol.107(4),484–490 (1995).Crossref, Medline, CAS, Google Scholar
- 201 Saika S, Kawashima Y, Miyamoto T et al.: Immunolocalization of prolyl 4-hydroxylase subunits, α-smooth muscle actin, and extracellular matrix components in human lens capsules with lens implants. Exp. Eye Res.66(3),283–294 (1998).Crossref, Medline, CAS, Google Scholar
- 202 Garcia-Olivas R, Hoebeke J, Castel S et al.: Differential binding of platelet-derived growth factor isoforms to glycosaminoglycans. Histochem. Cell Biol.120(5),371–382 (2003).Crossref, Medline, CAS, Google Scholar
- 203 Rouet V, Hamma-Kourbali Y, Petit E et al.: A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J. Biol. Chem.280(38),32792–32800 (2005).Crossref, Medline, CAS, Google Scholar
- 204 Hunter DD, Zhang M, Ferguson JW, Koch M, Brunken WJ: The extracellular matrix component WIF-1 is expressed during, and can modulate, retinal development. Mol. Cell. Neurosci.27(4),477–488 (2004).Crossref, Medline, CAS, Google Scholar
- 205 Sobajima S, Shimer AL, Chadderdon RC et al.: Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J.5(1),14–23 (2005).Crossref, Medline, Google Scholar
- 206 Badylak SF: Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol.12(3–4),367–377 (2004).Crossref, Medline, CAS, Google Scholar
- 207 Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF: Identification of extractable growth factors from small intestinal submucosa. J. Cell. Biochem.67(4),478–491 (1997).Crossref, Medline, CAS, Google Scholar
- 208 Mcdevitt CA, Wildey GM, Cutrone RM: Transforming growth factor-β1 in a sterilized tissue derived from the pig small intestine submucosa. J. Biomed. Mater. Res. A67(2),637–640 (2003).Crossref, Medline, Google Scholar
- 209 Hodde JP, Ernst DM, Hiles MC: An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J. Wound Care14(1),23–25 (2005).Crossref, Medline, CAS, Google Scholar
- 210 Badylak SF, Tullius R, Kokini K et al.: The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J. Biomed. Mater. Res.29(8),977–985 (1995).Crossref, Medline, CAS, Google Scholar
- 211 Brown AL, Brook-Allred TT, Waddell JE et al.: Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials26(5),529–543 (2005).Crossref, Medline, CAS, Google Scholar
- 212 Chen GP, Sato T, Ushida T, Hirochika R, Ochiai N, Tateishi T: Regeneration of cartilage tissue by combination of canine chondrocyte and a hybrid mesh scaffold. Mater. Sci. Eng. C Biomimetic Supramol. Syst.24(3),373–378 (2004).Crossref, Google Scholar
- 213 Dahl SL, Koh J, Prabhakar V, Niklason LE: Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant.12(6),659–666 (2003).Crossref, Google Scholar
- 214 Hopper RA, Woodhouse K, Semple JL: Acellularization of human placenta with preservation of the basement membrane: a potential matrix for tissue engineering. Ann. Plast. Surg.51(6),598–602 (2003).Crossref, Medline, Google Scholar
- 215 Hudson TW, Zawko S, Deister C et al.: Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng.10(11–12),1641–1651 (2004).Crossref, Medline, CAS, Google Scholar
- 216 Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H: Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann. Thorac. Surg.60(Suppl. 2),S353–S358 (1995).Crossref, Medline, CAS, Google Scholar
- 217 Abraham GA, Murray J, Billiar K, Sullivan SJ: Evaluation of the porcine intestinal collagen layer as a biomaterial. J. Biomed. Mater. Res.51(3),442–452 (2000).Crossref, Medline, CAS, Google Scholar
- 218 Wilshaw SP, Kearney JN, Fisher J, Ingham E: Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng.12(8),2117–2129 (2006).Crossref, Medline, CAS, Google Scholar
- 219 Wei HJ, Chen SC, Chang Y et al.: Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials27(31),5409–5419 (2006).Crossref, Medline, CAS, Google Scholar
- 220 Pham Q, Kasper F, Mistry A et al.: Analysis of the osteoinductive capacity and angiogenicity of an in vitro generated extracellular matrix. J. Biomed. Mater. Res. Part A (2009) (Epub ahead of print).Medline, Google Scholar
- 221 Ott HC, Matthiesen TS, Goh SK et al.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med.14(2),213–221 (2008).Crossref, Medline, CAS, Google Scholar
- 222 Badylak S, Obermiller J, Geddes L, Matheny R: Extracellular matrix for myocardial repair. Heart Surg. Forum6(2),E20–E26 (2003).Crossref, Medline, Google Scholar
- 223 Kochupura PY, Azeloglu EU, Kelly DJ et al.: Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation112(Suppl. 9),I144–I149 (2005).Crossref, Medline, Google Scholar
- 224 Chang Y, Chen SC, Wei HJ et al.: Tissue regeneration observed in a porous acellular bovine pericardium used to repair a myocardial defect in the right ventricle of a rat model. J. Thorac. Cardiovasc. Surg.130(3),705–711 (2005).Crossref, Medline, Google Scholar
- 225 Schenke-Layland K, Rofail F, Heydarkhan S et al.: The use of three-dimensional nanostructures to instruct cells to produce extracellular matrix for regenerative medicine strategies. Biomaterials (2009) (Epub ahead of print).Medline, Google Scholar
- 226 Throm AM, Liu WC, Lock CH, Billiar KL: Development of a cell-derived matrix: effects of epidermal growth factor in chemically defined culture. J. Biomed. Mater. Res. A (2009) (Epub ahead of print).Google Scholar
- 227 Jin CZ, Choi BH, Park SR, Min BH: Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J. Biomed. Mater. Res. A (2009) (Epub ahead of print).Medline, Google Scholar
- 228 Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka RL: Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J. Bone Miner. Res.22(12),1943–1956 (2007).▪ Verifies the complex combination of molecules harbored within stem cell-derived extracellular matrix and the ability of an acellular matrix to elicit a biological response in vivo.Crossref, Medline, CAS, Google Scholar
- 229 Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG: Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials26(9),971–977 (2005).Crossref, Medline, CAS, Google Scholar
- 230 Pham QP, Kasper FK, Mistry AS et al.: Analysis of the osteoinductive capacity and angiogenicity of an in vitro generated extracellular matrix. J. Biomed. Mater. Res. A88(2),295–303 (2009).Crossref, Medline, Google Scholar
- 231 Aizman I, Tate CC, Mcgrogan M, Case CC: Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J. Neurosci. Res. (2009) (Epub ahead of print).Medline, Google Scholar
- 232 Nair R, Ngangan AV, Mcdevitt TC: Efficacy of solvent extraction methods for acellularization of embryoid bodies. J. Biomater. Sci. Polym. Ed.19(6),801–819 (2008).Crossref, Medline, CAS, Google Scholar
- 233 Nair R, Shukla S, Mcdevitt TC: Acellular matrices derived from differentiating embryonic stem cells. J. Biomed. Mater. Res. A87(4),1075–1085 (2008).Crossref, Medline, Google Scholar
- 234 Ngangan AV, Mcdevitt TC: Acellularization of embryoid bodies via physical disruption methods. Biomaterials30(6),1143–1149 (2009).Crossref, Medline, CAS, Google Scholar

