We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Applications of bacteria and their derived biomaterials for repair and tissue regeneration

    Farzaneh Aavani

    Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), 15916-34311 Tehran, Iran

    ,
    Esmaeil Biazar

    *Author for correspondence: Tel.: +98 115 427 1105;

    E-mail Address: kia_esm@yahoo.com

    Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran

    ,
    Zoheir Heshmatipour

    Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran

    ,
    Nasibeh Arabameri

    Department of Microbiology, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran

    ,
    Mahshad Kamalvand

    Department of Biomedical Engineering, Tissue Engineering Group, Tonekabon Branch, Islamic Azad University, 46841-61167 Tonekabon, Iran

    &
    Abolfazl Nazbar

    National Cell Bank, Pasteur Institute of Iran, 13169-43551 Tehran, Iran

    Published Online:https://doi.org/10.2217/rme-2020-0116

    Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Biazar E. Application of polymeric nanofibers in medical designs (Part III: musculoskeletal and urological tissues). Int. J. Polym. Mater. Po. 66(1), 28–37 (2017).
    • 2. Biazar E. Application of polymeric nanofibers in medical designs (Part IV: drug and biological materials delivery). Int. J. Polym. Mater. Po. 66(2), 53–60 (2017).
    • 3. Biazar E. Application of polymeric nanofibers in medical designs (Part II; neural and cardiovascular tissues). Int. J. Polym. Mater. Po. 65(18), 957–970 (2016).
    • 4. Biazar E. Application of polymeric nanofibers in medical designs (Part I; skin and eye). Int. J. Polym. Mater. Po. 66(10), 521–531 (2017).
    • 5. Biazar E. Application of polymeric nanofibers in soft tissues regeneration. Polym. Advan. Technol. 27(11), 1404–1412 (2016).
    • 6. Steinbüchel A. Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr. Opin. Biotech. 16(6), 607–613 (2005).
    • 7. Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci. 13(11), 14002–14015 (2012). •• In this descriptive review, basic information on bacterial derived biopolymers physiologic and morphologic functions as well as their applications in the biomedical industrial sectors are evaluated.
    • 8. Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat. Publ. Gr. 8(8), 578–592 (2010). •• Summarizes the key aspects of bacterial biopolymer production and describes their some applications.
    • 9. Flemming HC, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs) – Part II: technical aspects. Water Sci. Technol. 43(6), 1–8 (2001).
    • 10. Absalon C, Ymele-Leki P, Watnick PI. The bacterial biofilm matrix as a platform for protein delivery matrix. mBio. 3(4), e00127–12 (2012).
    • 11. Havandi A, Jalalvandi E. Biofabrication of bacterial constructs: new three-dimensional biomaterials. Bioengineering (Basel). 6(2), 44 (2019). • Summarizes the state-of-the-art biofabrication of bacterial constructs, highlighting the progress and unmet challenges.
    • 12. Costerton JW. Introduction to biofilm. Int. J. Antimicrob. Ag. 11(3–4), 217–221 (1999).
    • 13. Salek K, Gutierrez T. Surface-active biopolymers from marine bacteria for potential biotechnological applications. AIMS Microbiol. 2(2), 92–107 (2016).
    • 14. Kopp-Hoolihan L. Prophylactic and therapeutic uses of probiotics: a review. J. Am. Diet. Assoc. 101(2), 229–238 (2001). • States a comprehensive definition of probiotics as useful commensal microbes.
    • 15. Salminen S, von Wright A, Morelli L et al. Demonstration of safety of probiotics — a review. Int. J. Food Microbiol. 44(1–2), 93–106 (1998).
    • 16. Bober JR, Beisel CL, Nair NU. Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications. Annu. Rev. Biomed. Eng. 20, 277–300 (2018). •• Discusses recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria and Bacteroides for these purposes.
    • 17. Schrezenmeir J, de Vrese M. Probiotics, prebiotics, and synbiotics—approaching a definition. Am. J. Clin. Nutr. 73(2), 361–364 (2001).
    • 18. Gomes AC, Bueno AA, de Souza RG, Mota JF. Gut microbiota, probiotics and diabetes. Nutr. J. 13, 60 (2014).
    • 19. Hill C, Guarner F, Reid G et al. The International scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastro. Hepat. 11, 506 (2014).
    • 20. Lara-Villoslada F, Olivares M, Sierra S, Rodríguez JM, Boza J, Xaus J. Beneficial effects of probiotic bacteria isolated from breast milk. Br. J. Nutr. 98(S1), 96–100 (2007).
    • 21. Roudsari MR, Karimi R, Sohrabvandi S et al. Health effects of probiotics on the skin. Crit. Rev. Food Sci. Nutr. 55(9), 1219–1240 (2013).
    • 22. Guéniche A, David P, Philippe B, Stephanie B, Elif B, Isabelle CH. Probiotics for photoprotection. Dermatoendocrinol. 1(5), 275–279 (2009).
    • 23. Lukic J, Chen V, Strahinic I et al. Probiotics or pro-healers the role of beneficial bacteria in tissue repair. Wound Repair Regen. 25(6), 912–922 (2018).
    • 24. Spyropoulos BG, Misiakos EP, Fotiadis C, Stoidis CN. S Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Dig. Dis. Sci. 294, 285–294 (2011).
    • 25. Argenta A, Satish L, Gallo P, Liu F, Kathju S. Local application of probiotic bacteria prophylaxes against sepsis and death resulting from burn wound infection. PLoS ONE 11(10), e0165294 (2016).
    • 26. Khan MA, Hussain Z, Ali S, Qamar Z, Imran M, Hafee FY. Fabrication of electrospun probiotic functionalized nanocomposite scaffolds for infection control and dermal burn healing in a mice model. ACS Biomater. Sci. Eng. 5(11), 6109–6116 (2019).
    • 27. Oryan A, Jalili M, Kamali A, Nikahval B. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: an in vivo evaluation. Burns 44(7), 1775–1786 (2018).
    • 28. Falco CY, Falkman P, Risbo J, Cardenas M, Medronho B. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr. Polym. 172, 175–183 (2017).
    • 29. Dharmani P, De Simone C, Chadee K. The probiotic mixture VSL#3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor. PLoS ONE 8(3), e58671 (2013).
    • 30. Garcia VG, Knoll LR, Longo M et al. Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J. Assoc. Physicians India 58(488–90), 495–496 (2010).
    • 31. Reddy MS, Reddy DRK. Anti-aging: review and experimental clinical study of bioavailable calcium – probiotics and their effect on reversing osteopenia, osteoporosis, and other common and chronic health conditions. Int. J. Pharm. Sci. Nanotech. 4(3), 1436–1445 (2011).
    • 32. Schepper JD, Irwin R, Kang J et al. Probiotics in gut-bone signaling. Adv. Exp. Med. Biol. 1033, 225–247 (2017).
    • 33. Asshafa RN, Purwanti T, Hariyadi DM. Effect of combination sodium alginate-gelatin 1%:2% content in characteristic and antimicrobial activity of probiotic microspheres Lactobacillus acidophilus. UNEJ e-Proceeding. S.l., 10–13 (2017).
    • 34. Nath A, Molnár MA, Csighy A et al. Biological activities of lactose-based prebiotics and symbiosis with probiotics on controlling osteoporosis, blood-lipid and glucose levels. Medicina (Kaunas). 54(6), 98(2018).
    • 35. Lee CS, Kim SH. Anti-inflammatory and anti-osteoporotic potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as probiotics. Probiotics Antimicrob. 12(2), 623–634(2020).
    • 36. Sah BNP, Vasiljevic T, Mckechnie S, Donkor ON. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 156, 264–270 (2014).
    • 37. Stancu CS, Sanda GM, Deleanu M, Sima AV. Probiotics determine hypolipidemic and antioxidant effects in hyperlipidemic hamsters. Mol. Nutr. Food Res. 58, 559–568 (2014).
    • 38. Donlan RM. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8(9), 881–890 (2002).
    • 39. Hu M, Li J, Guo Q, Zhu YQ, Niu HM. Probiotics bio film-integrated electrospun nano fiber membranes: a new starter culture for fermented milk production. J. Agric. Food Chem. 67(11), 3198–3208 (2019).
    • 40. Botyanszki Z, Tay PK, Nguyen PQ, Nussbaumer MG, Joshi NS. Engineered catalytic biofilms: site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol. Bioeng. 112(10), 2016–2024 (2015).
    • 41. Teschler JK, Zamorano-Sánchez D, Utada AS et al. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 13(5), 255–268 (2015).
    • 42. Islam MS, Jahid MI, Rahman MM et al. Biofilm acts as a microenvironment for plankton-associated vibrio cholerae in the aquatic environment of bangladesh. Microbiol. Immunol. 51(4), 369–379 (2007).
    • 43. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ. Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol. 860, 845–860 (2005).
    • 44. Vijayendra SVN, Shamala TR. Film forming microbial biopolymers for commercial applications - A review. Crit. Rev. Biotechnol. 34(4), 338–357 (2014).
    • 45. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006).
    • 46. Laspidou CS, Rittmann BE. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 2711–2720 (2002).
    • 47. Wingender J, Neu TR, Flemming HC. What are bacterial extracellular polymeric substances? In: Microbial Extracellular Polymeric Substances Wingender JNeu TRFlemming HC (Eds). Springer, Berlin, Heidelberg, 10.1007/978-3-642-60147-7_1.
    • 48. Casillo A, Lanzetta R, Parrilli M, Corsaro MM. Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar. Drugs 16(2), E69 (2018). •• Presents a summary of the status of the research about the structures of exopolysaccharides from marine bacteria, including capsular, medium released and biofilm embedded polysaccharides.
    • 49. Escárcega-gonzález CE, Garza-cervantes JA, Vázquez-rodríguez A, Morones-Ramirez JR. Bacterial exopoly saccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int. J. Polym. Sci. 2018 (2018).
    • 50. Liu K, Catchmark M. Bacterial cellulose/hyaluronic acid nanocomposites production through co- culturing gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system. Bioresour. Technol. Bioresour Technol. 290, 121715 (2019).
    • 51. Freitas F, Alves VD, Reis MAM. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 29(8), 388–398 (2011).
    • 52. Moscovici M. Present and future medical applications of microbial exopolysaccharides. Front. Microbiol. 6, 1012 (2015).
    • 53. Llamas I, Amjres H, Mata JA, Quesada E, Bejar V. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules. 17(6), 7103–7120 (2012).
    • 54. Kumar AS, Mody K, Jha B. Bacterial exopolysaccharides – a perception. J. Basic Microbiol. 47(2), 103–117 (2007).
    • 55. Sun G, Mao JJ. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine (Lond). 7(11), 1771–1784 (2012). •• Describes recent advances in dextran-based polymers and scaffolds for controlled release and tissue engineering.
    • 56. Fang J, Li P, Lu X, Fang L, Lu X, Ren F. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 88, 503–513 (2019).
    • 57. Liu Z, Li Y, Li W et al. Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv.Mater. 1703393, 1–10 (2018).
    • 58. Wang X, Li Z, Shi T et al. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 73, 21–30 (2017).
    • 59. Ritz U, Eberhardt M, Klein A et al. Photocrosslinked dextran-based hydrogels as carrier system for the cells and cytokines induce bone regeneration in critical size defects in mice. Gels. 4(3), pii: E63 (2018).
    • 60. Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules. 19(1), 3–21 (2018).
    • 61. Desai RM, Koshy ST, Hilderbrand SA, Mooney D, Joshi NS. Versatile click alginate hydrogels crosslinked via tetrazine e norbornene chemistry. Biomaterials 50, 30–37 (2015).
    • 62. Chen WP, Chen JY, Chang SC, Su CL. Bacterial alginate produced by a mutant of azotobacter vinelandii. Appl. Environ. Microbiol. 49(3), 543–546 (1985).
    • 63. Gacesa P. Bacterial alginate biosynthesis – recent progress and future prospects. Microbiology 144, 1133–1143 (1998).
    • 64. Sabra MW, Zeng AP, Deckwer WD. Bacterial alginate: physiology, product quality and process aspects. Appl. Microbiol. Biotechnol. 56, 315–325 (2001).
    • 65. Hay ID, Rehman ZU, Ghafoor A, Rehm BHA. Bacterial biosynthesis of alginates. J. Chem. Technol. Biotechnol. 85, 752–759 (2010).
    • 66. Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb. Biotechnol. 6(6), 637–650 (2013). •• Excellent review paper that considerates the alginates produced by bacteria; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.
    • 67. Ballesteros NA, Alonso M, Saint-jean SR, Perez-Prieto SI. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss). Fish Shellfish Immunol. 45(2), 877–888 (2015).
    • 68. Tabriz AG, Hermida MA, Leslie NR, Shu W. Parathyroid xenotransplantation without immuno suppression in experimental hypoparathyroidism: long-term in vivo function following micro encapsulation with a clinically suitable alginate. World J. Surg. 24(11), 1361–1366 (2000).
    • 69. Akoulina E, Dudun A, Bonartsev A, Bonartseva G, Voinova V. Effect of bacterial alginate on growth of mesenchymal stem cells. Int. J. Polym. Mater. Po. 68(1–3), 115–118 (2019).
    • 70. Prajapati VD, Jani GK, Zala BS, Khutliwala TA. An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr. Polym. 93(2), 670–678 (2013).
    • 71. Silva-Correia J, Oliveira JM, Caridade SG et al. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J. Tissue Eng. Regen. Med. 5(6), 97–107 (2011).
    • 72. Osmalek T, Froelich A, Milanowski B, Bialas M, Heyla K, Szybowicz M. pH-dependent behavior of novel gellan beads loaded with naproxen. Curr. Drug Deliv. 15(1), 52–63 (2018).
    • 73. Oliveira JT, Martins L, Picciochi R et al. Gellan gum: a new biomaterial for cartilage tissue engineering applications. J. Biomed. Mater. Res. A. 93(3), 852–863 (2010).
    • 74. Zargar SM, Mehdikhani M, Rafienia M. Reduced graphene oxide – reinforced gellan gum thermoresponsive hydrogels as a myocardial tissue engineering scaffold. J. Bioact. Compat. Polym. 34(4–5), 331–345 (2019).
    • 75. Douglas TE, Piwowarczyk W, Pamula E. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed. Mater. 9(4), 045014 (2014).
    • 76. Bonifacio MA, Gentile P, Ferreira AM, Cometa S, De Giglio E. Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydr. Polym. 163, 280–291 (2017).
    • 77. Gantar A, Lucilia P, Oliveira JM et al. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Mater. Sci. Eng. 43, 27–36 (2014).
    • 78. Douglas TE, Krawczyk G, Pamula E et al. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. J. Tissue Eng. Regen. Med. 10(11), 938–954 (2016).
    • 79. Brandl H, Gross RA, Lenz RW, Fuller RC. Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv. Biochem. Eng. Biotechnol. 41, 77–93 (1990).
    • 80. Poli A, Di Donato P, Abbamondi GR, Nicolaus B. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. 2011 (2011).
    • 81. Williams SF, Martin DP, Horowitz DM, Peoples OP. PHA applications: addressing the price performance issue I. Tissue Eng. 25, 111–121 (1999).
    • 82. Biazar E. Polyhydroxyalkanoates as potential biomaterials for neural tissue regeneration. Int. J. Polym. Mater. Po. 63(17), 898–908 (2014). •• This excellent review considerates the application of polyhydroxyalkonates as the potential biomaterials in improving performance of injured nerves and neural reconstruction.
    • 83. Biazar E, Heidari Keshel S, Pouya M et al. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects. Neural Regen. Res. 8(24), 2266–2274 (2013).
    • 84. Zeinali R, Biazar E, Heidari Keshel S, Rezaei MT, Asadipour K. Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J. 60, 106–114 (2014).
    • 85. Insomphun C, Chuah J, Kobayashi S, Fujiki T, Numata K. Influence of hydroxyl groups on the cell viability of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater. Sci. Eng. 3, 3064–3075 (2017).
    • 86. Shershneva A, Murueva A, Nikolaeva E, Shishatskaya E, Volova T. Novel spray-dried PHA microparticles for antitumor drug release. Dry. Technol. 36(11), 1387–1398 (2018).
    • 87. Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydr. Polym. 219, 63–76 (2019). • Provides an overview of the production of bacterial cellulose from different culture methods.
    • 88. Naveen SV, Tan IKP, Goh YS, Raghavendra HRB, Murali MR, Kamarul T. Unmodified medium chain length polyhydroxyalkanoate (uMCL-PHA) as a thin film for tissue engineering application–characterization and in vitro biocompatibility. Mater. Lett. 141, 55–58 (2015).
    • 89. Mukheem A, Muthoosamy K, Manickam S et al. Fabrication and characterization of an electrospun PHA/Graphene silver nanocomposite scaffold for antibacterial applications. Materials (Basel). 11(9), pii: E1673 (2018).
    • 90. Lukasiewicz B, Basnett P, Nigmatullin R, Matharu R, Knoeles JC, Roy I. Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater. 71, 225–234 (2018).
    • 91. Zhang J, Shishatskaya EI, Volova TG, de Silva LF, Chen GQ. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater. Sci. Eng. C Mater. Biol. Appl. 86, 144–150 (2018). • In this review some therapeutic applications of polyhydroxyalkanoates (PHA) are summarized.
    • 92. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 102(6), 1437–1449 (2007).
    • 93. Liu W, Du H, Liu H et al. Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain. Chem. Eng. 8(44), 16691–16700 (2020).
    • 94. Mohite BV, Koli SH, Patil SV. Bacterial cellulose-based hydrogels: synthesis, properties, and applications. In: Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series Mondal M (Ed.). Springer, Cham, Switzerland (2019).
    • 95. Hickey RJ, Pelling AE. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 7, 45 (2019).
    • 96. Bodin A, Backdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellu- lose tubes. Biotechnol. Bioeng. 97, 425–434 (2007).
    • 97. Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 92(2), 1432–1442 (2013).
    • 98. Aboelnaga A, Elmasrya M, Adly OA et al. Microbial cellulose dressing compared with silver sulphadiazine for the treatment of partial thickness burns: a prospective, randomized, clinical trial. Burns 1982–1988 (2018).
    • 99. Shi Z, Zang S, Jiang F et al. In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv. 2, 1040–1046 (2012).
    • 100. Mo Z, Zhao Z, Chen H, Niu GP, Shi HF. Heterogeneous preparation of cellulose – polyaniline conductive composites with cellulose activated by acids and its electrical properties. Carbohydr. Polym. 75(4), 660–664 (2009).
    • 101. Luo H, Xiong G, Hu D et al. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys. 143(1), 373–379 (2013).
    • 102. Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 99, 2491–2511 (2015). •• Emphasises on reports that prove bacterial cellulose utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering.
    • 103. Martínez Ávila H, Schwarz S, Feldmann EM et al. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol. 98, 7423–7435 (2014).
    • 104. Li J, Wan Y, Li L, Liang H, Wang J. Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C. 29(5), 1635–1642 (2009).
    • 105. Gao C, Wan Y, Yang C et al. Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J. Porous. Mater. 18, 139–145 (2011).
    • 106. Petri DFS. Xanthan gum: a versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 132(23), 42035 (2015).
    • 107. Bueno VB, Takahashi SH, Catalani LH, de Torresi SIC, Petry DFS. Biocompatible xanthan/polypyrrole scaffolds for tissue engineering. Mater. Sci. Eng. C. 52, 121–128 (2015).
    • 108. Corneliu I, Popa M, Hamcerencu M, Adadie MJM. Superabsorbant hydrogels based on xanthan and poly (vinyl alcohol). The study of the swelling properties. Eur. Polym. J. 38, 2313–2320 (2002).
    • 109. Shao H, Han G, Ling P et al. Intra-articular injection of xanthan gum reduces pain and cartilage damage in a rat osteoarthritis model. Carbohydr. Polym. 92(2), 1850–1857 (2013).
    • 110. Han G, Wang G, Zhu X et al. Preparation of xanthan gum injection and its protective effect on articular cartilage in the development of osteoarthritis. Carbohydr. Polym. 87, 1837–1842 (2012).
    • 111. Shawan MMAK, Islam N, Aziz S, Khatun N. Fabrication of xanthan gum: gelatin (Xnt: gel) hybrid composite hydrogels for evaluating skin wound healing efficacy. Mod. Appl. Sci. 13 (2019).
    • 112. Kotla NG, Singh S, Maddiboyina B, Sunnapu O, Webster TJ. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media. Int. J. Nanomed. 17, 1089–1095 (2016).
    • 113. Leone G, Consumi M, Lamponi S et al. Hybrid PVA-xanthan gum hydrogels as nucleus pulposus substitutes. Int. J. Polym. Mater. Po. 68, 681–690 (2019).
    • 114. Shiedlin A, Bigelow R, Christopher W et al. Evaluation of hyaluronan from different sources: streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules. 5(6), 2122–2127 (2004).
    • 115. Chircov C, Grumezescu AM, Bejenaru LE. Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol. 59(1), 71–76 (2018).
    • 116. Boeriu CG, Springer J, Kooy FK, van den Broek LAM, Eggink G. Production methods for hyaluronan. Int. J. Carbohydr. Chem. 2013, 624967 (2013).
    • 117. Güngör G, Gedikli S, Akgün DE et al. Bacterial hyaluronic acid production through an alternative extraction method and its characterization. JCTB. 94, 1843–1852 (2019).
    • 118. Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. Biotech. 6(1), 67 (2016).
    • 119. Sani ES, Portillo-Lara R, Spencer A et al. Engineering adhesive and antimicrobial hyaluronic acid/elastin-like polypeptide hybrid hydrogels for tissue engineering applications. ACS Biomater. Sci. Eng. 4(7), 2528–2540 (2018).
    • 120. Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29(1), 17–25 (2007). •• Presents an overview of the occurrence and physiological properties of hyaluronic acid, as well as of the recent advances in production biotechnology and preparation of the hyaluronic acid-based materials for medical application.
    • 121. Gokila S, Gomathi T, Vijayalakshmi K, Alshahrani FA, Anil S, Sudha NP. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. Int. J. Biol. Macromol. 120(Pt A), 876–885 (2018).
    • 122. Tarusha L, Paoletti S, Travan A, Marsich E. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. J. Mater. Sci. Mater. Med. 29(3), 22 (2018).
    • 123. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 178, 4885–4893 (1996).
    • 124. Scott PM, Erickson KM, Troutman JM. Identification of the functional roles of six key proteins in the biosynthesis of enterobacteriaceae colanic acid. Biochemistry 58, 1818–1830 (2019).
    • 125. Gosline JM, Demont ME, Denny MW. The structure and properties of spider silk. Endeavour 10, 37–43 (1986).
    • 126. Ameri Bafghi R, Biazar E. Development of oriented nanofibrous silk guide for repair of nerve defects. Int. J. Polym. Mater. Po. 65, 91–95 (2016).
    • 127. Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J. Biomat. Sci. Polym. E. 26, 1139–1151 (2015).
    • 128. Ebrahimi M, Ai J, Biazar E et al. In vivo assessment of a nanofibrous silk tube as nerve guide for sciatic nerve regeneration. Artif. Cells Nanomed. Biotechnol. 46, 394–401 (2018).
    • 129. Ebrahimi M, Ai J, Biazar E et al. Investigation of properties of chemically cross-linked silk nanofibrous mat as a nerve guide. Mater. Technol. 32, 551–559 (2017).
    • 130. Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Nat. Acad. Sci. 107, 14059–14063 (2010).
    • 131. Oster C, Bonde JS, Bulow L, Dicko C. Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes. Biopolymers 101, 378–390 (2014).
    • 132. Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S. Novel assembly properties of recombinant spider dragline silk proteins. Curr. Biol. 14, 2070–2074 (2004).
    • 133. Heidebrecht A, Scheibel T. Recombinant production of spider silk proteins. Adv. Appl. Microbiol. 82, 115–153 (2013).
    • 134. Widmaier DM, Tullman-Ercek D, Mirsky EA et al. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 309 (2009).
    • 135. Widmaier DM, Voigt CA. Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb. Cell Fact. 9, 78 (2010).
    • 136. Seidel A, Liivak O, Calve S et al. Regenerated spider silk: processing, properties, and structure. Macromolecules 33, 775–780 (2000).
    • 137. Zheng K, Ling S. De novo design of recombinant spider silk proteins for material applications. Biotechnol. J. 14(1), e1700753 (2019).
    • 138. Collins T, Barroca M, Branca F, Padrao J, Machado R, Casal M. High level biosynthesis of a silk-elastin-like protein in E. Coli. Biomacromolecules 15, 2701–2708 (2014).
    • 139. Heidebrecht A, Eisoldt L, Diehl J et al. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv. mater. 27(13), 2189–2194 (2015).
    • 140. Wang H, Xue Z, Wei MH, Chen DL, Li M. A novel scaffold from recombinant spider silk protein in tissue engineering. Adv. Mater. Res. 153, 1734–1744 (2011).
    • 141. Tokareva O, Michalczechen-lacerda VA, Rech EL, Kaplan DL. Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6(6), 651–663 (2013).
    • 142. Kaplan DL, Mackiewicz A. Purification and cytotoxcicity of tag-free bioengineered spider silk proteins. NIH Public Access 101, 456–464 (2014).
    • 143. Widhe M, Bysell H, Nystedt S et al. Recombinant spider silk as matrices for cell culture. Biomaterials 31, 9575–9585 (2010).
    • 144. Hedhammar M, Rising A, Grip S et al. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47(11), 3407–3417 (2008).
    • 145. Agapov II, Pustovalova OL, Moisenovich MM et al. Three-dimensional scaffold made from recombinant spider silk protein for tissue engineering. Dokl. Biochem. Biophys. 426, 127–130 (2009).
    • 146. Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers (Basel). 8(2), 42 (2016).
    • 147. Parenteau-bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 3, 1863–1887 (2010).
    • 148. Cosgriff-Hernandez E, Hahn MS, Russell B. Bioactive hydrogels based on designer collagens. Acta Biomater. 6, 3969–3977 (2010).
    • 149. Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J. Struct. Biol. 186(3), 451–461 (2014). •• This excellent paper provides important information about the bacteria derived collagen and its structure.
    • 150. Peng YY, Yoshizumi A, Danon SJ et al. A Streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial. Biomaterials 31, 2755–2761 (2010).
    • 151. Caswell CC, Barczyk M, Keene DR, Lukomska E, Gollberg DE, Lukomski S. Identification of the first prokaryotic collagen sequence motif that mediates binding to human collagen receptors. J. Biol. Chem. 283, 36168–36175 (2008).
    • 152. Browning MB, Dempsey D, Guiza V et al. Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8, 1010–1021 (2012).
    • 153. Parmar PA, St-Pierre JP, Chow LW et al. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater. 51, 75–88 (2017).
    • 154. Wei G, Su Z, Reynolds NP et al. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem. Soc. Rev. 46, 4661–4708 (2017).
    • 155. Adamcik J, Lara C, Usov I et al. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale. 4, 4426–4429 (2012).
    • 156. Kumar ST, Meinhardt J, Fuchs AK. Structure and biomedical applications of amyloid oligomer nanoparticles. ACS Nano 8(11), 11042–11052 (2014).
    • 157. Zeng G, Vad BS, Dueholm MS et al. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front. Microbiol. 6, 1–14 (2015).
    • 158. Jacob RS, Ghosh D, Singh PK et al. Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 54, 97–105 (2015).
    • 159. Das S, Jacob RS, Patel K, Singh N, Maji SK. Amyloid fibrils: versatile biomaterials for cell adhesion and tissue engineering applications amyloid fibrils: versatile biomaterials for cell adhesion and tissue engineering applications. Biomaterials 54, 97–105 (2018).
    • 160. Axpe E, Duraj-Thatte A, Chang Y et al. Fabrication of amyloid curli fibers – alginate nanocomposite hydrogels with enhanced stiffness. ACS Biomater. Sci. Eng. 4, 2100–2105 (2018).
    • 161. Reynolds NP, Charnley M, Mezzenga R, Hartley PG. Engineered lysozyme amyloid fibril networks support cellular growth and spreading. Biomacromolecules. 15, 599–608 (2014).
    • 162. Li C, Born AK, Schweizer T, Wong MZ, Cerruti M, Mezzenga R. Amyloid-hydroxyapatite bone biomimetic composites. Adv. Mater. 26, 3207–3212 (2014).
    • 163. Jacob RS, George E, Singh PK et al. Cell adhesion on amyloid fibrils lacking integrin recognition motif. J. Biol. Chem. 291(10), 5278–5298 (2016).
    • 164. Das S, Zhou K, Ghosh D et al. Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. NPG Asia Materials 8, 304 (2016).
    • 165. Neumann K, Stephan DP, Ziegler K et al. Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol. J. 3, 249–258 (2005).
    • 166. Aboulmagd E, Bernd F, Alexander S. Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Arch. Microbiol. 174, 297–306 (2000).
    • 167. Berg H, Ziegler K, Piotukh K. Biosynthesis of the cyanobacterial reserve polymer multi- L -arginyl-poly- L -aspartic acid (cyanophycin) mechanism of the cyanophycin synthetase reaction studied with synthetic primers. Eur. J. Biochem. 267(17), 5561–5570 (2000).
    • 168. Mooibroek H, Oosterhuis N, Giuseppin M et al. Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl. Microbiol. Biotechnol. 77, 257–267 (2007).
    • 169. Richter R, Hejazi M, Kraft R, Zeigler K, Lockao W. Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin) - Molecular cloning of the gene of Synechocystis sp PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. Eur. J. Biochem. 263, 163–169 (1999).
    • 170. Tseng W, Fang T, Chen S. Cellular biocompatibility of cyanophycin substratum prepared with recombinant Escherichia coli. Biochem. Eng. J. 105, 97–106 (2016).
    • 171. To A, Gad P, Mammalian NIN. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res. 16, 215–226 (1991).
    • 172. Cao M, Geng W, Liu L et al. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour. Technol. 102, 4251–4257 (2011).
    • 173. Shih I, Van YT. The production of poly-(c-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79(3), 207–225 (2001).
    • 174. Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Li S. Biotechnology for Biofuels Microbial synthesis of poly - γ - glutamic acid: current progress, challenges, and future perspectives. Biotechnol. Biofuels 9, 134 (2016). • Focuses on the production, properties and applications of γ-PGA.
    • 175. Ogunleye A, Bhat A, Irorere VU. Poly-γ -glutamic acid: production, properties and applications. Microbiology 161, 1–17 (2015).
    • 176. Oppermann-Sanio FB, Steinbüchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Die Naturwissenschaften. 89(1), 11–22 (2002).
    • 177. Tsao CT, Chang HC, Lin YY et al. Evaluation of chitosan/γ -poly (glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohyd. Polym. 84(2), 812–819 (2011).
    • 178. Hsieh C, Tsai S, Wang D, Chang Y, Hsieh H. Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials 26, 5617–5623 (2005).
    • 179. Shih I, Shen M, Van Y. Microbial synthesis of poly (ε-lysine) and its various applications. Bioresour. Technol. 97, 1148–1159 (2006).
    • 180. Kahar P, Iwata T, Hiraki J, Park EY, Okabe M. Enhancement & ε-Polylysine production by streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 91, 190–194 (2001).
    • 181. Shih IL, Van YT, Shen MH. Biomedical applications of chemically and microbiologically synthesized poly (glutamic acid) and poly (lysine). Mini-Rev. Med. 4(2), 179–188 (2004).
    • 182. Yoshida T, Nagasawa T. epsilon-Poly-L-lysine: microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol. 62(1), 21–26 (2003). • Considerates microbial production, biodegradation and application potential of ε-Poly-l-lysine.
    • 183. Choi HJ, Kunioka M. Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid). Radiat. Phys. Chem. 46, 175–179 (1995).
    • 184. Kennedy S, Lace R, Carserides C et al. Poly- ε -lysine based hydrogels as synthetic substrates for the expansion of corneal endothelial cells for transplantation. J. Mater. Sci. Mater. Med. 30, 102 (2019).
    • 185. Mekhail M, Jahan K, Tabrizian M. Genipin-crosslinked chitosan/poly- l -lysine gels promote fibroblast adhesion and proliferation. Carbohydr. Polym. 108, 91–98 (2014).
    • 186. Kito M, Onji Y, Yoshida T, Nagasawa T. Occurrence of ε-poly-L-lysine-degrading enzyme in γ-poly-L-lysine-tolerant Sphingobacterium multivorum OJ10: purification and characterization. FEMS Microbiol. Lett. 207, 147–151 (2002).
    • 187. Hua J, Li Z, Xia W et al. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Mater. Sci. Eng. C. 61, 879–892 (2016).
    • 188. Wang X, Schröder HC, Müller WEG. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering. J. Mater. Chem. B. 6, 2385–2412 (2018).
    • 189. Nguyen HTT, Le VQ, Hansen AA, Nielsen JL, Nielsen PH. High diversity and abundance of putative polyphosphate- accumulating. FEMS Microbiol. Ecol. 76, 256–267 (2011).
    • 190. Wang X, Schröder HC, Feng Q, Draenert F, Muller WEG. The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar. Drugs 11(3), 718–746 (2013).
    • 191. Sinha KM, Yasuda H, Coombes MM, Dent SYR. Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO J. 29, 68–79 (2009).
    • 192. Sun L, Blair HC, Peng Y. Calcineurin regulates bone formation by the osteoblast. PNAS. 102(47), 17130–17135 (2005).
    • 193. Schröder HC, Kurz L, Müller WE, Lorenz B. Polyphosphate in bone. Biochemistry 65, 296–303 (2000).
    • 194. Xie H, Gu Z, Li C et al. A novel bioceramic scaffold integrating silk fi broin in calcium polyphosphate for bone tissue-engineering. Ceram. Int. 42, 2386–2392 (2016).
    • 195. Dhivya S, Narayan AK, Logith Kumar R, Chandran SV, Vairamani M, Selvamurugan N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif. 51(1), e1 2408 (2018).
    • 196. Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antonio RV, Porto LM. Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater. Sci. Eng. C. 28, 549–554 (2008).
    • 197. Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater. 6(7), 2540–2547 (2010).
    • 198. Jessica A, Hanna S, Henrik B, Paul G. Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res. A. 94A, 1124–1132 (2010).
    • 199. Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P. Engineering microporosity in bacterial cellulose scaffolds. J. Tissue Eng. Regen. Med. 2, 320–330 (2008).
    • 200. Yin N, Stilwell MD, Santos TMA, Wang H, Weible DB. Agarose particle templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater. 12, 129–138 (2015).
    • 201. Li Z, Lv X, Chen S et al. Improved cell infiltration and vascularization of three-dimensional bacterial cellulose nanofibrous scaffolds by template biosynthesis. RSC Adv. 6, 42229–42239 (2016).
    • 202. Andersson J, Stenhamre H, Bäckdahl H, Gatenholm P. Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. J. Biomed. Mater. Res. A. 94(4), 1124–1132 (2010).
    • 203. Weibel DB, Lee A, Mayer M et al. Bacterial printing press that regenerates its ink: contact-printing bacteria using hydrogel stamps. Langmuir 21, 6436–6442 (2005).
    • 204. Schaffner M, Rühs PA, Coulter F, Kilcher S, Studart AR. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017).
    • 205. Rühs PA, Storz F, López Gómez YA, Haug M, Fischer P. 3D bacterial cellulose biofilms formed by foam templating. NPJ Biofilms Microbi. 4, 21 (2018).
    • 206. Ferreira MPA, Talman V, Torrieri G et al. Dual-drug delivery using dextran-functionalized nanoparticles targeting cardiac fibroblasts for cellular reprogramming. Adv. Funct. Mater. 28, 1705134 (2018).
    • 207. Moydeen AM, Padusha SA, Aboelfetoh EF, Al-Deyab SS, El-Newehy MH. Fabrication of electrospun poly(vinyl alcohol)/Dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study. Int. J. Biol. Macromol. 116, 1250–1259 (2018).
    • 208. Cimini D, De Rosa M, Schiraldi C. Production of glucuronic acid-based polysaccharides by microbial fermentation for biomedical applications. Biotechnol. J. 7(2), 237–250 (2012).
    • 209. Hendriks J, Riesle J, van Blitterswijk CA. Co-culture in cartilage tissue engineering. J. Tissue Eng. Regen. Med. 4, 524–531 (2010).