We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pain in rheumatoid arthritis: models and mechanisms

    Duygu B Bas

    Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden

    ,
    Jie Su

    Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden

    ,
    Gustaf Wigerblad

    Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden

    &
    Camilla I Svensson

    *Author for correspondence:

    E-mail Address: camilla.svensson@ki.se

    Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden

    Published Online:https://doi.org/10.2217/pmt.16.4

    Pain is one of the most challenging symptoms for patients with rheumatoid arthritis (RA). RA-related pain is frequently considered to be solely a consequence of inflammation in the joints; however, recent studies show that multiple mechanisms are involved. Indeed, RA pain may start even before the disease manifests, and frequently does not correlate with the degree of inflammation or pharmacological management. In this aspect, animal studies have the potential to provide new insights into the pathology that initiate and maintain pain in RA. The focus of this review is to describe the most commonly used animal models for studies of RA pathology, which have also been utilized in pain research, and to summarize findings providing potential clues to the mechanisms involved in the regulation of RA-induced pain.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Heiberg T, Finset A, Uhlig T, Kvien TK. Seven year changes in health status and priorities for improvement of health in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64(2), 191–195 (2005).
    • 2 Klooster ten PM, Veehof MM, Taal E, van Riel PLCM, van de Laar MAFJ. Changes in priorities for improvement in patients with rheumatoid arthritis during 1 year of anti-tumour necrosis factor treatment. Ann. Rheum. Dis. 66(11), 1485–1490 (2007).
    • 3 Rantapää-Dahlqvist S, de Jong BAW, Berglin E et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48(10), 2741–2749 (2003).
    • 4 Nielen MM, van Schaardenburg D, Reesink HW et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50(2), 380–386 (2004).
    • 5 Bos WH, Wolbink GJ, Boers M et al. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann. Rheum. Dis. 69(3), 490–494 (2010).
    • 6 van de Stadt LA, de Koning MHMT, van de Stadt RJ et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 63(11), 3226–3233 (2011).
    • 7 Roche PA, Klestov AC, Heim HM. Description of stable pain in rheumatoid arthritis: a 6 year study. J. Rheumatol. 30(8), 1733–1738 (2003).
    • 8 Koop SM, Klooster ten PM, Vonkeman HE, Steunebrink LMM, van de Laar MAFJ. Neuropathic-like pain features and cross-sectional associations in rheumatoid arthritis. Arthritis Res. Ther. 17(1), 237 (2015).
    • 9 Welsing PM, Fransen J, van Riel PL. Is the disease course of rheumatoid arthritis becoming milder? Time trends since 1985 in an inception cohort of early rheumatoid arthritis. Arthritis Rheum. 52(9), 2616–2624 (2005).
    • 10 Lee YC, Frits ML, Iannaccone CK et al. Subgrouping of patients with rheumatoid arthritis based on pain, fatigue, inflammation, and psychosocial factors. Arthritis Rheumatol. 66(8), 2006–2014 (2014).
    • 11 Taylor P, Manger B, Alvaro-Gracia J et al. Patient perceptions concerning pain management in the treatment of rheumatoid arthritis. J. Int. Med. Res. 38(4), 1213–1224 (2010).
    • 12 Lee YC, Cui J, Lu B et al. Pain persists in DAS28 rheumatoid arthritis remission but not in ACR/EULAR remission: a longitudinal observational study. Arthritis Res. Ther. 13(3), R83 (2011). • This study is pointing the importance of pain problem in rheumatoid arthritis (RA) patients and highlighting that the inflammation is not the only component in RA pain.
    • 13 Schipper LG, van Hulst LTC, Grol R, van Riel PLCM, Hulscher MEJL, Fransen J. Meta-analysis of tight control strategies in rheumatoid arthritis: protocolized treatment has additional value with respect to the clinical outcome. Rheumatology (Oxford) 49(11), 2154–2164 (2010).
    • 14 Durham CO, Fowler T, Donato A, Smith W, Jensen E. Pain management in patients with rheumatoid arthritis. Nurse Pract. 40(5), 38–45 (2015).
    • 15 Ahlqvist E, Hultqvist M, Holmdahl R. The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis. Arthritis Res. Ther. 11(3), 226 (2009).
    • 16 Hu Y, Cheng W, Cai W, Yue Y, Li J, Zhang P. Advances in research on animal models of rheumatoid arthritis. Clin. Rheumatol. 32(2), 161–165 (2013). • This review paper is showing recent findings in different animal models of RA.
    • 17 Inglis JJ, Notley CA, Essex D et al. Collagen-induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheum. 56(12), 4015–4023 (2007). •• This is the first study evaluating pain-like behavior in collagen-induced arthritis model.
    • 18 Marinova-Mutafchieva L, Williams RO, Mason LJ, Mauri C, Feldmann M, Maini RN. Dynamics of proinflammatory cytokine expression in the joints of mice with collagen-induced arthritis (CIA). Clin. Exp. Immunol. 107(3), 507–512 (1997).
    • 19 Gao XH, Gao R, Tian YZ et al. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. Br. J. Pharmacol. 172(12), 2991–3002 (2015).
    • 20 Boettger MK, Hensellek S, Richter F et al. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 58(8), 2368–2378 (2008).
    • 21 Ebbinghaus M, Uhlig B, Richter F et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 64(12), 3897–3907 (2012).
    • 22 Cunha TM, Verri WA, Valério DA et al. Role of cytokines in mediating mechanical hypernociception in a model of delayed-type hypersensitivity in mice. Eur. J. Pain 12(8), 1059–1068 (2008).
    • 23 Pinto LG, Cunha TM, Vieira SM et al. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 148(2), 247–256 (2010).
    • 24 Verri WA, Guerrero ATG, Fukada SY et al. IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice. Proc. Natl Acad. Sci. USA 105(7), 2723–2728 (2008).
    • 25 Richter F, Natura G, Ebbinghaus M et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 64(12), 4125–4134 (2012).
    • 26 Sachs D, Coelho FM, Costa VV et al. Cooperative role of tumour necrosis factor-α, interleukin-1β and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice. Br. J. Pharmacol. 162(1), 72–83 (2011).
    • 27 Banchet von GS, Petrow PK, Bräuer R, Schaible HG. Monoarticular antigen-induced arthritis leads to pronounced bilateral upregulation of the expression of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion neurons of rats. Arthritis Res. 2(5), 424–427 (2000).
    • 28 Khodorova A, Montmayeur JP, Strichartz G. Endothelin receptors and pain. J. Pain 10(1), 4–28 (2009).
    • 29 Massier J, Eitner A, Segond von Banchet G, Schaible H-G. Effects of differently activated rodent macrophages on sensory neurons: implications for arthritis pain. Arthritis Rheumatol. 67(8), 2263–2272 (2015).
    • 30 Segond von Banchet G, Boettger MK, Fischer N, Gajda M, Bräuer R, Schaible H-G. Experimental arthritis causes tumor necrosis factor-alpha-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain 145(1), 151–159 (2009).
    • 31 Su J, Gao T, Shi T et al. Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model. J. Comp. Neurol. 523(10), 1505–1528 (2015).
    • 32 Makino A, Sakai A, Ito H, Suzuki H. Involvement of tachykinins and NK1 receptor in the joint inflammation with collagen type II-specific monoclonal antibody-induced arthritis in mice. J. Nippon. Med. Sch. 79(2), 129–138 (2012).
    • 33 Sluka KA, Rasmussen LA, Edgar MM et al. Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. Arthritis Rheum. 65(5), 1194–1202 (2013).
    • 34 Christianson CA, Corr M, Firestein GS, Mobargha A, Yaksh TL, Svensson CI. Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain 151(2), 394–403 (2010). •• This is the first study evaluating pain-like behavior in K/BxN serum transfer model.
    • 35 Borbély É, Botz B, Bölcskei K et al. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis. Brain Behav. Immun. 45, 50–59 (2015).
    • 36 Botz B, Bölcskei K, Kereskai L et al. Differential regulatory role of pituitary adenylate cyclase-activating polypeptide in the serum-transfer arthritis model. Arthritis Rheumatol. 66(10), 2739–2750 (2014).
    • 37 Clark AK, Grist J, Al-Kashi A, Perretti M, Malcangio M. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. Arthritis Rheum. 64(6), 2038–2047 (2012).
    • 38 Nieto FR, Clark AK, Grist J, Chapman V, Malcangio M. Calcitonin gene-related peptide expressing sensory neurons and spinal microglial reactivity contribute to pain states in collagen-induced arthritis. Arthritis Rheumatol. 67(6), 1668–1677 (2015).
    • 39 König C, Zharsky M, Möller C, Schaible H-G, Ebersberger A. Involvement of peripheral and spinal tumor necrosis factor α in spinal cord hyperexcitability during knee joint inflammation in rats. Arthritis Rheumatol. 66(3), 599–609 (2014).
    • 40 Boettger MK, Weber K, Grossmann D et al. Spinal tumor necrosis factor alpha neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis: a role for spinal tumor necrosis factor alpha during induction and maintenance of peripheral inflammation. Arthritis Rheum. 62(5), 1308–1318 (2010).
    • 41 Bas DB, Su J, Sandor K et al. Collagen antibody-induced arthritis evokes persistent pain with spinal glial involvement and transient prostaglandin dependency. Arthritis Rheum. 64(12), 3886–3896 (2012). •• This is the first study evaluating pain-like behavior in collagen antibody-induced arthritis model.
    • 42 Agalave NM, Svensson CI. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol. Med. 20, 569–578 (2014).
    • 43 Christianson CA, Dumlao DS, Stokes JA et al. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain 152(12), 2881–2891 (2011).
    • 44 Kinsey SG, Naidu PS, Cravatt BF, Dudley DT, Lichtman AH. Fatty acid amide hydrolase blockade attenuates the development of collagen-induced arthritis and related thermal hyperalgesia in mice. Pharmacol. Biochem. Behav. 99(4), 718–725 (2011).
    • 45 Obreja O, Biasio W, Andratsch M et al. Fast modulation of heat-activated ionic current by proinflammatory interleukin 6 in rat sensory neurons. Brain 128(Pt 7), 1634–1641 (2005).
    • 46 Boettger MK, Leuchtweis J, Kümmel D, Gajda M, Bräuer R, Schaible H-G. Differential effects of locally and systemically administered soluble glycoprotein 130 on pain and inflammation in experimental arthritis. Arthritis Res. Ther. 12(4), R140 (2010).
    • 47 Boettger MK, Weber K, Gajda M, Bräuer R, Schaible HG. Spinally applied ketamine or morphine attenuate peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis. Brain. Behav. Immun. 24(3), 474–485 (2010).
    • 48 Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen an experimental model of arthritis. J. Exp. Med. 146(3), 857–868 (1977).
    • 49 Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature 283(5748), 666–668 (1980).
    • 50 Wooley PH, Luthra HS, Stuart JM, David CS. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J. Exp. Med. 154(3), 688–700 (1981).
    • 51 Holmdahl R, Jansson L, Larsson A, Jonsson R. Arthritis in DBA/1 mice induced with passively transferred type II collagen immune serum. Immunohistopathology and serum levels of anti-type II collagen auto-antibodies. Scand. J. Immunol. 31(2), 147–157 (1990).
    • 52 Terato K, Hasty KA, Reife RA, Cremer MA, Kang AH, Stuart JM. Induction of arthritis with monoclonal antibodies to collagen. J. Immunol. 148(7), 2103–2108 (1992).
    • 53 Svensson L, Jirholt J, Holmdahl R, Jansson L. B cell-deficient mice do not develop type II collagen-induced arthritis (CIA). Clin. Exp. Immunol. 111(3), 521–526 (1998).
    • 54 Holmdahl R, Jansson L, Andersson M, Jonsson R. Genetic, hormonal and behavioural influence on spontaneously developing arthritis in normal mice. Clin. Exp. Immunol. 88(3), 467–472 (1992).
    • 55 Baek YH, Choi DY, Yang HI, Park DS. Analgesic effect of electroacupuncture on inflammatory pain in the rat model of collagen-induced arthritis: mediation by cholinergic and serotonergic receptors. Brain Res. 1057(1), 181–185 (2005).
    • 56 Broom DC, Matson DJ, Bradshaw E et al. Characterization of N-(adamantan-1-ylmethyl)-5-[(3R-amino-pyrrolidin-1-yl)methyl]-2-chloro-benzamide, a P2X7 antagonist in animal models of pain and inflammation. J. Pharmacol. Exp. Ther. 327(3), 620–633 (2008).
    • 57 Patro N, Sharma A, Kariaya K, Patro I. Spirulina platensis protects neurons via suppression of glial activation and peripheral sensitization leading to restoration of motor function in collagen-induced arthritic rats. Indian J. Exp. Biol. 49(10), 739–748 (2011).
    • 58 Brackertz D, Mitchell GF, Vadas MA, Mackay IR. Studies on antigen-induced arthritis in mice. III. Cell and serum transfer experiments. J. Immunol. 118(5), 1645–1648 (1977).
    • 59 van den Berg WB, van de Putte LB, Zwarts WA, Joosten LA. Electrical charge of the antigen determines intraarticular antigen handling and chronicity of arthritis in mice. J. Clin. Invest. 74(5), 1850–1859 (1984).
    • 60 van den Berg WB, van de Putte LB. Electrical charge of the antigen determines its localization in the mouse knee joint. Deep penetration of cationic BSA in hyaline articular cartilage. Am. J. Pathol. 121(2), 224–234 (1985).
    • 61 Schaible HG, Ebersberger A, Banchet von GS. Mechanisms of pain in arthritis. Ann. NY Acad. Sci. 966, 343–354 (2002). •• This review paper is covering peripheral and central sensitization mechanisms in inflammation-induced joint pain based on the findings from antigen-induced arthritis model.
    • 62 Verri WA, Cunha TM, Parada CA et al. Antigen-induced inflammatory mechanical hypernociception in mice is mediated by IL-18. Brain Behav. Immun. 21(5), 535–543 (2007).
    • 63 Leuchtweis J, Imhof AK, Montechiaro F, Schaible HG, Boettger MK. Validation of the digital pressure application measurement (PAM) device for detection of primary mechanical hyperalgesia in rat and mouse antigen-induced knee joint arthritis. Methods Find. Exp. Clin. Pharmacol. 32(8), 575–583 (2010).
    • 64 Stuart JM, Dixon FJ. Serum transfer of collagen-induced arthritis in mice. J. Exp. Med. 158(2), 378–392 (1983).
    • 65 Nandakumar KS, Svensson L, Holmdahl R. Collagen type II-specific monoclonal antibody-induced arthritis in mice: description of the disease and the influence of age, sex, and genes. Am. J. Pathol. 163(5), 1827–1837 (2003).
    • 66 Nandakumar KS, Holmdahl R. Collagen antibody induced arthritis. Methods Mol. Med. 136, 215–223 (2007).
    • 67 Agalave NM, Larsson M, Abdelmoaty S et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain 155(9), 1802–1813 (2014).
    • 68 Wigerblad G, Sandor K, Nandakumar KS, Holmdahl R, Svensson C. Collagen antibodies induce pain-like behavior in mice without signs of inflammation. Arthritis Rheum. 65, S528–S529 (2013).
    • 69 Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell 87(5), 811–822 (1996).
    • 70 Ji H, Gauguier D, Ohmura K et al. Genetic influences on the end-stage effector phase of arthritis. J. Exp. Med. 194(3), 321–330 (2001).
    • 71 Matsumoto I, Staub A, Benoist C, Mathis D. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 286(5445), 1732–1735 (1999).
    • 72 Ji H, Pettit A, Ohmura K et al. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J. Exp. Med. 196(1), 77–85 (2002).
    • 73 Maccioni M, Zeder-Lutz G, Huang H et al. Arthritogenic monoclonal antibodies from K/BxN mice. J. Exp. Med. 195(8), 1071–1077 (2002).
    • 74 Korganow AS, Ji H, Mangialaio S et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10(4), 451–461 (1999).
    • 75 Christianson CA, Corr M, Yaksh TL, Svensson CI. K/BxN serum transfer arthritis as a model of inflammatory joint pain. Methods Mol. Biol. 851, 249–260 (2012).
    • 76 Suhail MS, Christianson C, Koehrn F et al. Effects of long term polyarthritis and subsequent NSAID treatment on activity with disassociation of tactile allodynia in the mouse. Neurocomputing 84, 47–52 (2012).
    • 77 Siebert S, Tsoukas A, Robertson J, McInnes I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol. Rev. 67(2), 280–309 (2015).
    • 78 Schaible HG. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 16(5), 470 (2014).
    • 79 Hess A, Axmann R, Rech J et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108(9), 3731–3736 (2011).
    • 80 Tonussi CR, Ferreira SH. Tumour necrosis factor-alpha mediates carrageenin-induced knee-joint incapacitation and also triggers overt nociception in previously inflamed rat knee-joints. Pain 82(1), 81–87 (1999).
    • 81 Miller RJ, Jung H, Bhangoo SK, White FA. Cytokine and chemokine regulation of sensory neuron function. Handb. Exp. Pharmacol. (194), 417–449 (2009).
    • 82 Shubayev VI, Myers RR. Axonal transport of TNF-alpha in painful neuropathy: distribution of ligand tracer and TNF receptors. J. Neuroimmunol. 114(1), 48–56 (2001).
    • 83 Li Y, Ji A, Weihe E, Schäfer MK-H. Cell-specific expression and lipopolysaccharide-induced regulation of tumor necrosis factor alpha (TNFalpha) and TNF receptors in rat dorsal root ganglion. J. Neurosci. 24(43), 9623–9631 (2004).
    • 84 Schäfers M, Sorkin LS, Geis C, Shubayev VI. Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neurosci. Lett. 347(3), 179–182 (2003).
    • 85 Inglis JJ, Nissim A, Lees DM, Hunt SP, Chernajovsky Y, Kidd BL. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis. Res. Ther. 7(4), R807–16 (2005).
    • 86 Nicol GD, Vasko MR. Unraveling the story of NGF-mediated sensitization of nociceptive sensory neurons: ON or OFF the Trks? Mol. Interv. 7(1), 26–41 (2007).
    • 87 Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br. J. Pharmacol. 121(3), 417–424 (1997).
    • 88 Queiroz-Junior CM, Bessoni RLC, Costa VV, Souza DG, Teixeira MM, Silva TA. Preventive and therapeutic anti-TNF-α therapy with pentoxifylline decreases arthritis and the associated periodontal co-morbidity in mice. Life. Sci. 93(9), 423–428 (2013).
    • 89 McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365(23), 2205–2219 (2011).
    • 90 Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6(7), 521–532 (2005).
    • 91 Copray JC, Mantingh I, Brouwer N et al. Expression of interleukin-1 beta in rat dorsal root ganglia. J. Neuroimmunol. 118(2), 203–211 (2001).
    • 92 Binshtok AM, Wang H, Zimmermann K et al. Nociceptors are interleukin-1beta sensors. J. Neurosci. 28(52), 14062–14073 (2008).
    • 93 Fukuoka H, Kawatani M, Hisamitsu T, Takeshige C. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1 beta in the rat. Brain Res. 657(1), 133–140 (1994).
    • 94 Hirano T, Matsuda T, Turner M et al. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur. J. Immunol. 18(11), 1797–1801 (1988).
    • 95 Navarro-Millán I, Singh JA, Curtis JR. Systematic review of tocilizumab for rheumatoid arthritis: a new biologic agent targeting the interleukin-6 receptor. Clin. Ther. 34(4), 788–802 (2012).
    • 96 Vazquez E, Kahlenbach J, Segond von Banchet G, König C, Schaible HG, Ebersberger A. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum. 64(7), 2233–2242 (2012).
    • 97 Gardiner NJ, Cafferty WBJ, Slack SE, Thompson SWN. Expression of gp130 and leukaemia inhibitory factor receptor subunits in adult rat sensory neurones: regulation by nerve injury. J. Neurochem. 83(1), 100–109 (2002).
    • 98 Dubový P, Klusáková I, Svízenská I, Brázda V. Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol. 6(1), 73–83 (2010).
    • 99 Oprée A, Kress M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J. Neurosci. 20(16), 6289–6293 (2000).
    • 100 Banchet von GS, Kiehl M, Schaible HG. Acute and long-term effects of IL-6 on cultured dorsal root ganglion neurones from adult rat. J. Neurochem. 94(1), 238–248 (2005).
    • 101 Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9(8), 556–567 (2009).
    • 102 Segond von Banchet G, Boettger MK, König C, Iwakura Y, Bräuer R, Schaible H-G. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol. Cell. Neurosci. 52, 152–160 (2013).
    • 103 Fattahi MJ, Mirshafiey A. Prostaglandins and rheumatoid arthritis. Arthritis 2012(5), 239310–239317 (2012).
    • 104 Park HJ, Sandor K, McQueen J et al. The effect of gabapentin and ketorolac on allodynia and conditioned place preference in antibody-induced inflammation. Eur. J. Pain doi:10.1002/ejp.816 (2015) (Epub ahead of print).
    • 105 Hökfelt T, Wiesenfeld-Hallin Z, Villar M, Melander T. Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci. Lett. 83(3), 217–220 (1987).
    • 106 Bileviciute I, Lundeberg T, Ekblom A, Theodorsson E. Bilateral changes of substance P-, neurokinin A-, calcitonin gene-related peptide- and neuropeptide Y-like immunoreactivity in rat knee joint synovial fluid during acute monoarthritis. Neurosci. Lett. 153(1), 37–40 (1993).
    • 107 Donnerer J, Schuligoi R, Stein C, Amann R. Upregulation, release and axonal transport of substance P and calcitonin gene-related peptide in adjuvant inflammation and regulatory function of nerve growth factor. Regul. Pept. 46(1), 150–154 (1993).
    • 108 Calzà L, Pozza M, Zanni M, Manzini CU, Manzini E, Hökfelt T. Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82(2), 575–589 (1998).
    • 109 Ji RR, Zhang X, Wiesenfeld-Hallin Z, Hökfelt T. Expression of neuropeptide Y and neuropeptide Y (Y1) receptor mRNA in rat spinal cord and dorsal root ganglia following peripheral tissue inflammation. J. Neurosci. 14(11 Pt 1), 6423–6434 (1994).
    • 110 Patel YC. Somatostatin and its receptor family. Front. Neuroendocrinol. 20(3), 157–198 (1999).
    • 111 Barajon I, Bersani M, Quartu M et al. Neuropeptides and morphological changes in cisplatin-induced dorsal root ganglion neuronopathy. Exp. Neurol. 138(1), 93–104 (1996).
    • 112 Imhof AK, Glück L, Gajda M et al. Differential antiinflammatory and antinociceptive effects of the somatostatin analogs octreotide and pasireotide in a mouse model of immune-mediated arthritis. Arthritis Rheum. 63(8), 2352–2362 (2011).
    • 113 Vaudry D, Falluel-Morel A, Bourgault S et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61(3), 283–357 (2009).
    • 114 Stösser S, Agarwal N, Tappe-Theodor A, Yanagisawa M, Kuner R. Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion. Pain 148(2), 206–214 (2010).
    • 115 Werner MFP, Trevisani M, Campi B, André E, Geppetti P, Rae GA. Contribution of peripheral endothelin ETA and ETB receptors in neuropathic pain induced by spinal nerve ligation in rats. Eur. J. Pain 14(9), 911–917 (2010).
    • 116 Pomonis JD, Rogers SD, Peters CM, Ghilardi JR, Mantyh PW. Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in nociception. J. Neurosci. 21(3), 999–1006 (2001).
    • 117 Imhof AK, Glück L, Gajda M, Bräuer R, Schaible HG, Schulz S. Potent anti-inflammatory and antinociceptive activity of the endothelin receptor antagonist bosentan in monoarthritic mice. Arthritis Res. Ther. 13(3), R97 (2011).
    • 118 Rahman W, Dickenson AH. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci. Lett. 557(Pt A), 19–26 (2013).
    • 119 Sousa-Valente J, Andreou AP, Urban L, Nagy I. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br. J. Pharmacol. 171(10), 2508–2527 (2014).
    • 120 Ikeuchi M, Kolker SJ, Burnes LA, Walder RY, Sluka KA. Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137(3), 662–669 (2008).
    • 121 Ikeuchi M, Kolker SJ, Sluka KA. Acid-sensing ion channel 3 expression in mouse knee joint afferents and effects of carrageenan-induced arthritis. J. Pain 10(3), 336–342 (2009).
    • 122 Loggia ML, Chonde DB, Akeju O et al. Evidence for brain glial activation in chronic pain patients. Brain 138(Pt 3), 604–615 (2015).
    • 123 Ji RR, Berta T, Nedergaard M. Glia and pain: Is chronic pain a gliopathy? Pain 154(Suppl. 1), 10–28 (2013).
    • 124 Alfonso Romero-Sandoval E, Sweitzer S. Nonneuronal central mechanisms of pain: glia and immune response. Prog. Mol. Biol. Transl. Sci. 131, 325–358 (2015).
    • 125 Sorge RE, Mapplebeck JCS, Rosen S et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18(8), 1081–1083 (2015).
    • 126 Gao YJ, Xu ZZ, Liu YC, Wen YR, Decosterd I, Ji RR. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 148(2), 309–319 (2010).
    • 127 Nishioku T, Yamauchi A, Takata F et al. Disruption of the blood-brain barrier in collagen-induced arthritic mice. Neurosci. Lett. 482(3), 208–211 (2010).
    • 128 Lampa J, Westman M, Kadetoff D et al. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice. Proc. Natl Acad. Sci. USA 109(31), 12728–12733 (2012).
    • 129 Clark AK, Malcangio M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell. Neurosci. 8, 121 (2014).
    • 130 Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog. Mol. Biol. Transl. Sci. 131, 251–279 (2015).
    • 131 Feldman P, Due MR, Ripsch MS, Khanna R, White FA. The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain. J. Neuroinflammation 9(1), 180 (2012).
    • 132 Nakamura Y, Morioka N, Abe H et al. Neuropathic pain in rats with a partial sciatic nerve ligation is alleviated by intravenous injection of monoclonal antibody to high mobility group box-1. PLoS ONE 8(8), e73640 (2013).
    • 133 Kim JB, Sig Choi J, Yu YM et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J. Neurosci. 26(24), 6413–6421 (2006).
    • 134 Pedrazzi M, Patrone M, Passalacqua M et al. Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling. J. Immunol. 179(12), 8525–8532 (2007).
    • 135 Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur. J. Neurosci. 20(2), 467–473 (2004).
    • 136 Sorge RE, LaCroix-Fralish ML, Tuttle AH et al. Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J. Neurosci. 31(43), 15450–15454 (2011).
    • 137 Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J. Leukoc. Biol. 76(3), 514–519 (2004).
    • 138 Scher JU, Pillinger MH. The anti-inflammatory effects of prostaglandins. J. Investig. Med. 57(6), 703–708 (2009).
    • 139 Schug SA, Goddard C. Recent advances in the pharmacological management of acute and chronic pain. Ann. Palliat. Med. 3(4), 263–275 (2014).
    • 140 Persson J. Ketamine in pain management. CNS Neurosci. Ther. 19(6), 396–402 (2013).
    • 141 King T, Porreca F. Preclinical assessment of pain: improving models in discovery research. Curr. Top. Behav. Neurosci. 20, 101–120 (2014).
    • 142 Fairbanks CA, Goracke-Postle CJ. Neurobiological studies of chronic pain and analgesia: rationale and refinements. Eur. J. Pharmacol. 759, 169–181 (2015).