We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenetics of chemotherapy-induced nausea and vomiting

    Shigekazu Sugino

    Department of Anesthesiology, Laboratory of Perioperative Genomics, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA

    &
    Piotr K Janicki

    *Author for correspondence:

    E-mail Address: pjanicki@hmc.psu.edu

    Department of Anesthesiology, Laboratory of Perioperative Genomics, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA

    Published Online:https://doi.org/10.2217/pgs.14.168

    Chemotherapy-induced nausea and vomiting (CINV) is associated with distressing adverse effects observed in patients during cytotoxic chemotherapy. One of the potential factors explaining suboptimal response to currently used antiemetics is variability in genes encoding enzymes and proteins that play a role in the action of antiemetic drugs. Pharmacogenomics studies of CINV are sparse and focus mainly on polymorphisms associated with serotonin receptor, drug metabolism and drug transport. Currently, the role of pharmacogenetics in mechanisms of CINV has not been fully unraveled, and it is premature to implement results of pharmacogenetic association studies of antiemetic drugs in clinical practice. More uniform studies, with genetic profiles and biomarkers relevant for the proposed target and transporter mechanisms, are needed.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Navari RM. Management of chemotherapy-induced nausea and vomiting: focus on newer agents and new uses for older agents. Drugs 73(3), 249–262 (2013).•• Excellent review providing a contemporary overview of current management of chemotherapy-induced nausea and vomiting (CINV).
    • 2 Trammel M, Roederer M, Patel J, McLeod H. Does pharmacogenomics account for variability in control of acute chemotherapy-induced nausea and vomiting with 5-hydroxytryptamine type 3 receptor antagonists? Curr. Oncol. Rep. 15(3), 276–285 (2013).
    • 3 Rosenberg B, VanCamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature 222, 385–386 (1969).
    • 4 Gralla RJ, Itri LM, Pisko SE et al. Antiemetic efficacy of high-dose metoclopramide: randomized trials with placebo and prochlorperazine in patients with chemotherapy-induced nausea and vomiting. N. Engl. J. Med. 305(16), 905–909 (1981).
    • 5 Miner WD, Sanger GJ. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism. Br. J. Pharmacol. 88(3), 497–499 (1986).
    • 6 Costall B, Domeney AM, Naylor RJ, Tattersall FD. 5-hydroxytryptamine M-receptor antagonism to prevent cisplatin-induced emesis. Neuropharmacology 25(8), 959–961 (1986).
    • 7 Sanger GJ, Andrews PLR. Treatment of nausea and vomiting: gaps in our knowledge. Auton. Neurosci. 129(1–2), 3–16 (2006).
    • 8 Rojas C, Slusher BS. Pharmacological mechanisms of 5-HT3 and tachykinin NK1 receptor antagonism to prevent chemotherapy-induced nausea and vomiting. Eur. J. Pharmacol. 684(1–3), 1–7 (2012).
    • 9 Darmani NA, Ray AP. Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem. Rev. 109(7), 3158–3199 (2009).
    • 10 Adayev T, Ranasinghe B, Banerjee P. Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Biosci. Rep. 25(5–6), 363–385 (2005).
    • 11 Saria A. The tachykinin NK1 receptor in the brain: pharmacology and putative functions. Eur. J. Pharmacol. 375(1–3), 51–60 (1999).
    • 12 Ramnath N, Menezes RJ, Loewen G et al. Hormone replacement therapy as a risk factor for non-small cell lung cancer: results of a case-control study. Oncology 73(5–6), 305–310 (2007).
    • 13 Miller AD, Nonaka S, Jakus J. Brain areas essential or non-essential for emesis. Brain Res. 647(2), 255–264 (1994).
    • 14 Smith JE, Paton JFR, Andrews PLR. An arterially perfused decerebrate preparation of Suncus murinus (house musk shrew) for the study of emesis and swallowing. Exp. Physiol. 87(5), 563–574 (2002).
    • 15 Horn CC, Kimball BA, Wang H et al. Why can't rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS ONE 8(4), e60537 (2013).
    • 16 Hornby PJ. Central neurocircuitry associated with emesis. Am. J. Med. 111(8), 106–112 (2001).
    • 17 Horn CC. Why is the neurobiology of nausea and vomiting so important? Appetite 50(2–3), 430–434 (2008).
    • 18 Horn CC, Wallisch WJ, Homanics GE, Williams JP. Pathophysiological and neurochemical mechanisms of postoperative nausea and vomiting. Eur. J. Pharmacol. 722(1), 55–66 (2014).•• Review on physiological and biological mechanisms of postoperative nausea and vomiting.
    • 19 Feyer P, Jordan K. Update and new trends in antiemetic therapy: the continuing need for novel therapies. Ann. Oncol. 22(1), 30–38 (2011).
    • 20 Rubenstein EB, Slusher BS, Rojas C, Navari RM. New approaches to chemotherapy-induced nausea and vomiting: from neuropharmacology to clinical investigations. Cancer J. 12(5), 341–347 (2006).
    • 21 De Wit R, Aapro M, Blower PR. Is there a pharmacological basis for differences in 5-HT3-receptor antagonist efficacy in refractory patients? Cancer Chemother. Pharmacol. 56(3), 231–238 (2005).
    • 22 Yaakob N, Malone DT, Exintaris B, Irving HR. Heterogeneity amongst 5-HT3 receptor receptor subunits: is this significant? Curr. Mol. Med. 11(1), 57–68 (2011).
    • 23 Janicki PK, Vealey R, Liu J, Escajeda J, Postula M, Welker K. Genome-wide Association study using pooled DNA to identify candidate markers mediating susceptibility to postoperative nausea and vomiting. Anesthesiology 115(1), 54–64 (2011).
    • 24 Janicki PK, Sugino S. Genetic factors associated with pharmacotherapy and background sensitivity to postoperative and chemotherapy-induced nausea and vomiting. Exp. Brain Res. 232(8), 2613–2625 (2014).• Provides summary of recent genetic research in postoperative nausea and vomiting.
    • 25 Shih V, Wan HS, Chan A. Clinical predictors of chemotherapy-induced nausea and vomiting in breast cancer patients receiving adjuvant doxorubicin and cyclophosphamide. Ann. Pharmacother. 43(3), 444–452 (2009).
    • 26 Hromatka BS, Tung JY, Kiefer AK, Do CB, Hinds DA, Eriksson N. Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes, and glucose homeostasis. http://biorxiv.org/content/early/2014/02/04/002386.
    • 27 Huszno J, Budryk M, Kołosza Z, Nowara E. The influence of BRCA1/BRCA2 mutations on toxicity related to chemotherapy and radiotherapy in early breast cancer patients. Oncology 85(5), 278–282 (2013).
    • 28 Feero WG, Guttmacher AE, Collins FS. Genomic medicine – an updated primer. N. Engl. J. Med. 362(21), 2001–2011 (2010).
    • 29 Reavley CM, Golding JF, Cherkas LF, Spector TD, MacGregor AJ. Genetic influences on motion sickness susceptibility in adult women: a classical twin study. Aviat. Space. Environ. Med. 77(11), 1148–1152 (2006).
    • 30 Angst MS, Lazzeroni LC, Phillips NG et al. Aversive and reinforcing opioid effects. Anesthesiology 117(1), 22–37 (2012).
    • 31 Tremblay P-B, Kaiser R, Sezer O et al. Variations in the 5-hydroxytryptamine type 3B receptor gene as predictors of the efficacy of antiemetic treatment in cancer patients. J. Clin. Oncol. 21(11), 2147–2155 (2003).
    • 32 Meineke C, Tzvetkov MV, Bokelmann K et al. Functional characterization of a -100_-102delAAG deletion-insertion polymorphism in the promoter region of the HTR3B gene. Pharmacogenet. Genomics 18(3), 219–230 (2008).
    • 33 Fasching P a, Kollmannsberger B, Strissel PL et al. Polymorphisms in the novel serotonin receptor subunit gene HTR3C show different risks for acute chemotherapy-induced vomiting after anthracycline chemotherapy. J. Cancer Res. Clin. Oncol. 134(10), 1079–1086 (2008).
    • 34 Hammer C, Fasching PA, Loehberg CR et al. Polymorphism in HTR3D shows different risks for acute chemotherapy-induced vomiting after anthracycline chemotherapy. Pharmacogenomics 11(7), 943–950 (2010).
    • 35 Tzvetkov MV, Saadatmand AR, Bokelmann K, Meineke I, Kaiser R, Brockmöller J. Effects of OCT1 polymorphisms on the cellular uptake, plasma concentrations and efficacy of the 5-HT(3) antagonists tropisetron and ondansetron. Pharmacogenomics J. 12(1), 22–29 (2012).
    • 36 Babaoglu MO, Bayar B, Aynacioglu AS et al. Association of the ABCB1 3435C>T polymorphism with antiemetic efficacy of 5-hydroxytryptamine type 3 antagonists. Clin. Pharmacol. Ther. 78(6), 619–926 (2005).
    • 37 Perwitasari DA, Wessels JAM, van der Straaten RJHM et al. Association of ABCB1, 5-HT3B receptor and CYP2D6 genetic polymorphisms with ondansetron and metoclopramide antiemetic response in Indonesian cancer patients treated with highly emetogenic chemotherapy. Jpn J. Clin. Oncol. 41(10), 1168–1176 (2011).
    • 38 He H, Yin JY, Xu YJ et al. Association of ABCB1 polymorphisms with the efficacy of ondansetron on chemotherapy-induced nausea and vomiting. Clin. Ther. 36(8), 1242–1252.e2 (2014).
    • 39 Kaiser R. Patient-tailored antiemetic treatment with 5-hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J. Clin. Oncol. 20(12), 2805–2811 (2002).
    • 40 Niesler B, Kapeller J, Hammer C, Rappold G. Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics 9(5), 501–504 (2008).
    • 41 Niesler B, Frank B, Kapeller J, Rappold G. Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 310, 101–111 (2003).
    • 42 Krzywkowski K, Jensen AA, Connolly CN, Bräuner-Osborne H. Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet. Genomics 17(4), 255–266 (2007).
    • 43 Kaiser R, Tremblay P. Investigation of the association between 5-HT3A receptor gene polymorphisms and efficiency of antiemetic treatment with 5-HT3 receptor antagonists. Pharmacogenetics 14(5), 271–278 (2004).
    • 44 Ward MB, Kotasek D, McKinnon RA. Investigation of HTR3C mutations for association with 5HT(3) receptor antagonist anti-emetic efficacy. Pharmacogenomics 9(8), 1027–1033 (2008).
    • 45 Tsuji D, Kim YI, Nakamichi H et al. Association of ABCB1 polymorphisms with the antiemetic efficacy of granisetron plus dexamethasone in breast cancer patients. Drug Metab. Pharmacokinet. 28(4), 299–304 (2013).
    • 46 Janicki PK. Cytochrome P450 2D6 metabolism and 5-hydroxytryptamine type 3 receptor antagonists for postoperative nausea and vomiting. Med. Sci. Monit. 11(10), RA322–RA328 (2005).
    • 47 Candiotti KA, Birnbach DJ, Lubarsky DA et al. The impact of pharmacogenomics on postoperative nausea and vomiting: do CYP2D6 allele copy number and polymorphisms affect the success or failure of ondansetron prophylaxis? Anesthesiology 102(3), 543–549 (2005).
    • 48 Wesmiller SW, Henker RA, Sereika SM et al. The association of CYP2D6 genotype and postoperative nausea and vomiting in orthopedic trauma patients. Biol. Res. Nurs. 15(4), 382–389 (2013).
    • 49 Hassan BAR, Yusoff ZBM. Genetic polymorphisms in the three malaysian races effect granisetron clinical antiemetic actions in breast cancer patients receiving chemotherapy. Asian Pac. J. Cancer Prev. 12(1), 185–191 (2011).
    • 50 Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 54(10), 1271–1294 (2002).
    • 51 Laugsand EA, Fladvad T, Skorpen F et al. Clinical and genetic factors associated with nausea and vomiting in cancer patients receiving opioids. Eur. J. Cancer 47(11), 1682–1691 (2011).
    • 52 Deenen MJ, Cats A, Beijnen JH, Schellens JHM. Part 2: pharmacogenetic variability in drug transport and phase I anticancer drug metabolism. Oncologist 16(6), 820–834 (2011).
    • 53 Han JY, Lim HS, Yoo YK et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 110(1), 138–147 (2007).
    • 54 Lum DWK, Perel P, Hingorani AD, Holmes MV. CYP2D6 genotype and tamoxifen response for breast cancer: a systematic review and meta-analysis. PLoS ONE 8(10), e76648 (2013).
    • 55 Petros WP, Hopkins PJ, Spruill S et al. Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J. Clin. Oncol. 23(25), 6117–6125 (2005).
    • 56 Ross JR, Rutter D, Welsh K et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J. 5(5), 324–336 (2005).
    • 57 Kasai S, Ikeda K. Pharmacogenomics of the human µ-opioid receptor. Pharmacogenomics 12(9), 1305–1320 (2011).
    • 58 Klepstad P, Rakvåg TT, Kaasa S et al. The 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol. Scand. 48(10), 1232–1239 (2004).
    • 59 Tan E, Lim ECP, Teo Y, Lim Y, Law H, Sia AT. Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain. Mol. Pain. 5(6), 32 (2009).
    • 60 Skarke C, Darimont J, Schmidt H, Geisslinger G, Lötsch J. Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin. Pharmacol. Ther. 73(1), 107–121 (2003).
    • 61 Coulbault L, Beaussier M, Verstuyft C et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin. Pharmacol. Ther. 79(4), 316–324 (2006).
    • 62 Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 105(2), 334–337 (2006).
    • 63 Chou WY, Yang LC, Lu HF et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol. Scand. 50(7), 787–792 (2006).
    • 64 Sia AT, Lim Y, Lim ECP et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 109(3), 520–526 (2008).
    • 65 Walter C, Lötsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain 146(3), 270–275 (2009).
    • 66 Rakvåg TT, Ross JR, Sato H, Skorpen F, Kaasa S, Klepstad P. Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol. Pain. 4(12), 64 (2008).
    • 67 Fujita K, Ando Y, Yamamoto W et al. Association of UGT2B7 and ABCB1 genotypes with morphine-induced adverse drug reactions in Japanese patients with cancer. Cancer Chemother. Pharmacol. 65(2), 251–258 (2010).
    • 68 Grant VL. Do conditioned taste aversions result from activation of emetic mechanisms? Psychopharmacology (Berlin) 93(4), 405–415 (1987).
    • 69 Mitchell D, Laycock JD, Stephens WF. Motion sickness-induced pica in the rat. Am. J. Clin. Nutr. 30(2), 147–150 (1977).
    • 70 Takeda N, Hasegawa S, Morita M et al. Neuropharmacological mechanisms of emesis. II. Effects of antiemetic drugs on cisplatin-induced pica in rats. Methods Find. Exp. Clin. Pharmacol. 17(10), 647–652 (1995).
    • 71 Yamamoto K, Ngan MP, Takeda N, Yamatodani A, Rudd JA. Differential activity of drugs to induce emesis and pica behavior in Suncus murinus (house musk shrew) and rats. Physiol. Behav. 83(1), 151–156 (2004).
    • 72 Ueno S, Matsuki N, Saito H. Suncus murinus: a new experimental model in emesis research. Life Sci. 41(4), 513–518 (1987).
    • 73 Darmani NA, Zhao W, Ahmad B. The role of D2 and D3 dopamine receptors in the mediation of emesis in Cryptotis parva (the least shrew). J. Neural Transm. 106(11–12), 1045–1061 (1999).
    • 74 Percie du Sert N, Chu KM, Wai MK, Rudd JA, Andrews PLR. Telemetry in a motion-sickness model implicates the abdominal vagus in motion-induced gastric dysrhythmia. Exp. Physiol. 95(7), 768–773 (2010).
    • 75 Horn CC, Meyers K, Pak D, Nagy A, Apfel CC, Williams BA. Post-anesthesia vomiting: impact of isoflurane and morphine on ferrets and musk shrews. Physiol. Behav. 106(4), 562–568 (2012).
    • 76 Sam TSW, Cheng JTY, Johnston KD et al. Action of 5-HT3 receptor antagonists and dexamethasone to modify cisplatin-induced emesis in Suncus murinus (house musk shrew). Eur. J. Pharmacol. 472(1–2), 135–145 (2003).
    • 77 Beleslin DB, Rezvani AH, Myers RD. Rostral hypothalamus: a new neuroanatomical site of neurochemically-induced emesis in the cat. Brain Res. Bull. 19(2), 239–244 (1987).
    • 78 Robinson BW, Mishkin M. Alimentary responses to forebrain stimulation in monkeys. Exp. Brain Res. 4(4), 330–366 (1968).
    • 79 Napadow V, Sheehan JD, Kim J et al. The brain circuitry underlying the temporal evolution of nausea in humans. Cereb. Cortex 23(4), 806–813 (2013).
    • 80 Kolesnikov Y, Gabovits B, Levin A, Voiko E, Veske A. Combined catechol-O-methyltransferase and mu-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects. Anesth. Analg. 112(2), 448–453 (2011).
    • 81 Söderpalm AH, Schuster A, de Wit H. Antiemetic efficacy of smoked marijuana: subjective and behavioral effects on nausea induced by syrup of ipecac. Pharmacol. Biochem. Behav. 69(3–4), 343–350 (2001).
    • 82 Suzuki T, Nurrochmad A, Ozaki M et al. Effect of a selective GABA(B) receptor agonist baclofen on the mu-opioid receptor agonist-induced antinociceptive, emetic and rewarding effects. Neuropharmacology 49(8), 1121–1131 (2005).
    • 83 Kawai M, Kawahara H, Hirayama S, Yoshimura N, Ida S. Effect of baclofen on emesis and 24-hour esophageal pH in neurologically impaired children with gastroesophageal reflux disease. J. Pediatr. Gastroenterol. Nutr. 38(3), 317–323 (2004).
    • 84 Phimister EG, Feero WG, Guttmacher AE. Realizing genomic medicine. N. Engl. J. Med. 366(8), 757–759 (2012).
    • 85 Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 370(25), 2418–2425 (2014).
    • 86 ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet. Med. 14(8), 759–761 (2012).