We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Journal of Comparative Effectiveness Research
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Personalized therapy in pain management: where do we stand?

    ,
    Lan Zhang

    Department of Anaesthesiology & Intensive Care Medicine, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany

    Department of Anaesthesiology and Pain Therapy, Inselspital, University of Bern, Freiburgstr., CH-3010 Bern, Switzerland

    &
    Frank Stüber

    Department of Anaesthesiology and Pain Therapy, Inselspital, University of Bern, Freiburgstr., CH-3010 Bern, Switzerland

    Published Online:https://doi.org/10.2217/pgs.10.47

    Genomic variations influencing response to pharmacotherapy of pain are currently under investigation. Drug-metabolizing enzymes represent a major target of ongoing research in order to identify associations between an individual’s drug response and genetic profile. Polymorphisms of the cytochrome P450 enzymes (CYP2D6) influence metabolism of codeine, tramadol, hydrocodone, oxycodone and tricyclic antidepressants. Blood concentrations of some NSAIDs depend on CYP2C9 and/or CYP2C8 activity. Genomic variants of these genes associate well with NSAIDs’ side effect profile. Other candidate genes, such as those encoding (opioid) receptors, transporters and other molecules important for pharmacotherapy in pain management, are discussed; however, study results are often equivocal. Besides genetic variants, further variables, for example, age, disease, comorbidity, concomitant medication, organ function as well as patients’ compliance, may have an impact on pharmacotherapy and need to be addressed when pain therapists prescribe medication. Although pharmacogenetics as a diagnostic tool has the potential to improve patient therapy, well-designed studies are needed to demonstrate superiority to conventional dosing regimes.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Kehlet H, Jensen TS, Woolf CJ: Persistent postsurgical pain: risk factors and prevention. Lancet367(9522),1618–1625 (2006).Crossref, MedlineGoogle Scholar
    • Katz J, Seltzer Z: Transition from acute to chronic postsurgical pain: risk factors and protective factors. Expert Rev. Neurother.9(5),723–744 (2009).Crossref, MedlineGoogle Scholar
    • Skorpen F, Laugsand EA, Klepstad P et al.: Variable response to opioid treatment: any genetic predictors within sight? Palliat. Med.22,310–327 (2008).▪ Excellent, systematic review of studies addressing human polymorphisms and their influence on opiate analgesia and side effects.Crossref, Medline, CASGoogle Scholar
    • Lötsch J, Geisslinger G, Tegeder I: Genetic modulation of the pharmacological treatment of pain. Pharmacol Ther.124(2),168–184 (2009).Crossref, MedlineGoogle Scholar
    • Rollason V, Samer C, Piguet V, Dayer P, Desmeules J: Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics9(7),905–933 (2008).Link, CASGoogle Scholar
    • Smith HS: Variations in opioid responsiveness. Pain Physician11,237–248 (2008).▪ Excellent review of the literature regarding genetic associations with opioid responsiveness, as well as the principal biologic processes that potentially contribute to genetically influenced variation on opioid responsiveness.Crossref, MedlineGoogle Scholar
    • Shah RR: Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philos. Trans. R. Soc. Lond. B Biol. Sci.360(1460),1617–1638 (2005).Crossref, Medline, CASGoogle Scholar
    • Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C: Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther.116(3),496–526 (2007).▪▪ Comprehensive survey of all CYP polymorphisms and their impact on drug therapy.Crossref, Medline, CASGoogle Scholar
    • Eichelbaum M, Ingelman-Sundberg M, Evans WE: Pharmacogenomics and individualized drug therapy. Annu. Rev. Med.57,119–137 (2006).Crossref, Medline, CASGoogle Scholar
    • 10  Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF: New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab. Rev.41(4),573–643 (2009).Crossref, Medline, CASGoogle Scholar
    • 11  Daly AK, Brockmoller J, Broly F et al.: Nomenclature for human CYP2D6 alleles. Pharmacogenetics6(3),193–201 (1996).Crossref, Medline, CASGoogle Scholar
    • 12  Zhou SF: Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin. Pharmacokinet.48(11),689–723 (2009).▪ Latest review on CYP2D6 genetic variants.Crossref, Medline, CASGoogle Scholar
    • 13  Maddocks I, Somogyi A, Abbott F, Hayball P, Parker D: Attenuation of morphine-induced delirium in palliative care by substitution with infusion of oxycodone. J. Pain Symptom Manage.12,182–189 (1996).Crossref, Medline, CASGoogle Scholar
    • 14  Gasche Y, Daali Y, Fathi M et al.: Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N. Engl. J. Med.351(27),2827–2831 (2004).Crossref, Medline, CASGoogle Scholar
    • 15  Susce MT, Murray-Carmichael E, de Leon J: Response to hydrocodone, codeine and oxycodone in a CYP2D6 poor metabolizer. Prog. Neuropsychopharmacol. Biol. Psychiatry30(7),1356–1358 (2006).Crossref, Medline, CASGoogle Scholar
    • 16  Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ: Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet368(9536),704 (2006).▪ Death of a newborn whose mother was prescribed codeine. The drug was extensively metabolized to morphine due to CYP2D6 gene duplication and high metabolic capacity.Crossref, MedlineGoogle Scholar
    • 17  Zhou SF: Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin. Pharmacokinet.48(12),761–804 (2009).Crossref, Medline, CASGoogle Scholar
    • 18  Williams DG, Hatch DJ, Howard RF: Codeine phosphate in paediatric medicine. Br. J. Anaesth.86(3),413–421 (2001).Crossref, Medline, CASGoogle Scholar
    • 19  Thorn CF, Klein TE, Altman RB. Codeine and morphine pathway. Pharmacogenet. Genomics19(7),556–558 (2009).Crossref, Medline, CASGoogle Scholar
    • 20  Lötsch J, Geisslinger G, Tegeder I. Genetic modulation of the pharmacological treatment of pain. Pharmacol. Ther.124(2),168–184 (2009).Crossref, MedlineGoogle Scholar
    • 21  Poulsen L, Brosen K, Arendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH: Codeine and morphine in extensive and poor metabolisers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur. J. Clin. Pharmacol.51(3–4),289–295 (1996).Crossref, Medline, CASGoogle Scholar
    • 22  Persson K, Sjöström S, Sigurdardottir I et al.: Patient-controlled analgesia (PCA) with codeine for postoperative pain relief in ten extensive metabolisers and one poor metaboliser of dextromethorphan. Br. J. Clin. Pharmacol.39(2),182–186 (1995).Crossref, Medline, CASGoogle Scholar
    • 23  Williams DG, Patel A, Howard RF: Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br. J. Anaesth.89(6),839–845 (2002).Crossref, Medline, CASGoogle Scholar
    • 24  Kirchheiner J, Schmidt H, Tzvetkov M et al.: Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolisers due to CYP2D6 duplication. Pharmacogenomics J.7(4),257–265 (2007).Crossref, Medline, CASGoogle Scholar
    • 25  Lötsch J, Rohrbacher M, Schmidt H, Doehring A, Brockmöller J, Geisslinger G: Can extremely low or high morphine formation from codeine be predicted prior to therapy initiation? Pain144(1–2),119–124 (2009).Crossref, MedlineGoogle Scholar
    • 26  Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G: Codeine, ultrarapid-metabolism genotype, and postoperative death. N. Engl. J. Med.361(8),827–828 (2009).Crossref, Medline, CASGoogle Scholar
    • 27  Voronov P, Przybylo HJ, Jagannathan N: Apnea in a child after oral codeine: a genetic variant – an ultra-rapid metabolizer. Paediatr. Anaesth.17(7),684–887 (2007).Crossref, MedlineGoogle Scholar
    • 28  Madadi P, Koren G, Cairns J et al.: Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can. Fam. Physician53(1),33–35 (2007).MedlineGoogle Scholar
    • 29  Madadi P, Shirazi F, Walter FG, Koren G: Establishing causality of CNS depression in breastfed infants following maternal codeine use. Paediatr. Drugs10(6),399–404 (2008).Crossref, MedlineGoogle Scholar
    • 30  Madadi P, Ross CJ, Hayden MR et al.: Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding: a case–control study. Clin. Pharmacol. Ther.85(1),31–35 (2009).Crossref, Medline, CASGoogle Scholar
    • 31  Fromm MF, Hofmann U, Griese EU, Mikus G: Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin. Pharmacol. Ther.58(4),374–382 (1995).Crossref, Medline, CASGoogle Scholar
    • 32  Wilder-Smith CH, Hufschmid E, Thormann W: The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine. A cross-over study with extensive and quinidine-induced poor metabolizers. Br. J. Clin. Pharmacol.45(6),575–581 (1998).Crossref, Medline, CASGoogle Scholar
    • 33  Schmidt H, Vormfelde SV, Walchner-Bonjean M et al.: The role of active metabolites in dihydrocodeine effects. Int. J. Clin. Pharmacol. Ther.41(3),95–106 (2003).Crossref, Medline, CASGoogle Scholar
    • 34  Otton SV, Schadel M, Cheung SW et al.: CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin. Pharmacol. Ther.54(5),463–472 (1993).Crossref, Medline, CASGoogle Scholar
    • 35  Hutchinson MR, Menelaou A, Foster DJ, Coller JK, Somogyi AA: CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br. J. Clin. Pharmacol.57(3),287–297 (2004).Crossref, Medline, CASGoogle Scholar
    • 36  Kaplan HL, Busto UE, Baylon GJ et al.: Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability. J. Pharmacol. Exp. Ther.281(1),103–108 (1997).Medline, CASGoogle Scholar
    • 37  Scott LJ, Perry CM: Tramadol: a review of its use in perioperative pain. Drugs60(1),139–176 (2000).Crossref, Medline, CASGoogle Scholar
    • 38  Lai J, Ma SW, Porreca F, Raffa RB: Tramadol, M1 metabolite and enantiomer affinities for cloned human opioid receptors expressed in transfected HN9.10 neuroblastoma cells. Eur. J. Pharmacol.316(2–3),369–372 (1996).Crossref, Medline, CASGoogle Scholar
    • 39  Enggaard TP, Poulsen L, Arendt-Nielsen L, Brøsen K, Ossig J, Sindrup SH: The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth. Analg.102(1),146–150 (2006).Crossref, Medline, CASGoogle Scholar
    • 40  Stamer UM, Lehnen K, Höthker F et al.: Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain105(1–2),231–238 (2003).Crossref, Medline, CASGoogle Scholar
    • 41  Wang G, Zhang H, He F, Fang X: Effect of the CYP2D6*10 C188T polymorphism on postoperative tramadol analgesia in a Chinese population. Eur. J. Clin. Pharmacol.62(11),927–931 (2006).Crossref, Medline, CASGoogle Scholar
    • 42  Pedersen RS, Damkier P, Brøsen K: Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur. J. Clin. Pharmacol.62(7),513–521 (2006).Crossref, Medline, CASGoogle Scholar
    • 43  Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stüber F: Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin. Pharmacol. Ther.82(1),41–47 (2007).Crossref, Medline, CASGoogle Scholar
    • 44  García-Quetglas E, Azanza JR, Sádaba B, Muñoz MJ, Gil I, Campanero MA: Pharmacokinetics of tramadol enantiomers and their respective phase I metabolites in relation to CYP2D6 phenotype. Pharmacol. Res.55(2),122–130 (2007).Crossref, Medline, CASGoogle Scholar
    • 45  Kirchheiner J, Keulen JT, Bauer S, Roots I, Brockmöller J: Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J. Clin. Psychopharmacol.28(1),78–83 (2008).Crossref, Medline, CASGoogle Scholar
    • 46  Stamer UM, Stüber F, Muders T, Musshoff F: Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth. Analg.107(3),926–929 (2008).Crossref, MedlineGoogle Scholar
    • 47  Lalovic B, Kharash E, Hoffer C, Risler L, Liu-Chen LY, Shen DD: Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating metabolites. Clin. Pharmacol. Ther.79(5),461–479 (2006).Crossref, Medline, CASGoogle Scholar
    • 48  Lemberg KK, Heiskanen TE, Neuvonen M et al.: Does co-administration of paroxetine change oxycodone analgesia: an interaction study in chronic pain patients. Scandinavian J. Pain1,24–33 (2010).Crossref, Medline, CASGoogle Scholar
    • 49  Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH: Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol. Scand.54(2),232–240 (2010).Crossref, Medline, CASGoogle Scholar
    • 50  Zwisler ST, Enggaard TP, Noehr-Jensen L et al.: The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin. Pharmacol. Toxicol.104(4),335–344 (2009).Crossref, Medline, CASGoogle Scholar
    • 51  Nieminen TH, Hagelberg NM, Saari TI et al.: Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology110(6),1371–1378 (2009).Crossref, Medline, CASGoogle Scholar
    • 52  Shaiova L, Berger A, Blinderman CD et al.: Consensus guideline on parenteral methadone use in pain and palliative care. Palliat. Support. Care6(2),165–176 (2008).Crossref, MedlineGoogle Scholar
    • 53  Bruera E, Sweeney C: Methadone use in cancer patients with pain: a review. J. Palliat. Med.5(1),127–138 (2002).Crossref, MedlineGoogle Scholar
    • 54  Crettol S, Déglon JJ, Besson J et al.: ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin. Pharmacol. Ther.80(6),668–681 (2006).Crossref, Medline, CASGoogle Scholar
    • 55  Lötsch J, Skarke C, Wieting J et al.: Modulation of the central nervous effects of levomethadone by genetic polymorphisms potentially affecting its metabolism, distribution, and drug action. Clin. Pharmacol. Ther.79(1),72–89 (2006).Crossref, MedlineGoogle Scholar
    • 56  de los Cobos J, Valero S, Haro G et al.: Development and psychometric properties of the Verona Service Satisfaction Scale for methadone-treated opioid-dependent patients (VSSS-MT). Drug Alcohol Depend.68(2),209–214 (2002).Crossref, MedlineGoogle Scholar
    • 57  Coller JK, Joergensen C, Foster DJ et al.: Lack of influence of CYP2D6 genotype on the clearance of (R)-, (S)- and racemic-methadone. Int. J. Clin. Pharmacol. Ther.45(7),410–417 (2007).Crossref, Medline, CASGoogle Scholar
    • 58  Kirchheiner J, Nickchen K, Bauer M et al.: Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry9(5),442–473 (2004).Crossref, Medline, CASGoogle Scholar
    • 59  Steimer W, Zöpf K, von Amelunxen S et al.: Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin. Chem.51(2),376–385 (2005).Crossref, Medline, CASGoogle Scholar
    • 60  Zhou SF, Zhou ZW, Huang M: Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology (2009) (Epub ahead of print).Google Scholar
    • 61  Kirchheiner J, Brockmöller J: Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin. Pharmacol. Ther.77(1),1–16 (2005).Crossref, Medline, CASGoogle Scholar
    • 62  Rodrigues AD: Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxygenase inhibitors the same? Drug Metab. Dispos.33(11),1567–1575 (2005).Crossref, Medline, CASGoogle Scholar
    • 63  Kirchheiner J, Störmer E, Meisel C, Steinbach N, Roots I, Brockmoller J: Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics13(8),473–480 (2003).Crossref, Medline, CASGoogle Scholar
    • 64  Pilotto A, Seripa D, Franceschi M et al.: Genetic susceptibility to nonsteroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology133(2),465–471 (2007).Crossref, Medline, CASGoogle Scholar
    • 65  Dorado P, Berecz R, Norberto MJ et al.: CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur. J. Clin. Pharmacol.59(3),221–225 (2003).Crossref, Medline, CASGoogle Scholar
    • 66  Tang C, Shou M, Rushmore TH et al.: In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics11(3),223–235 (2001).Crossref, Medline, CASGoogle Scholar
    • 67  Kirchheiner J, Meineke I, Freytag G, Meisel C, Roots I, Brockmoller J: Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin. Pharmacol. Ther.72(1),62–75 (2002).Crossref, Medline, CASGoogle Scholar
    • 68  Martínez C, García-Martín E, Blanco G, Gamito FJ, Ladero JM, Agúndez JA: The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects. Br. J. Clin. Pharmacol.59(1),62–69 (2005).Crossref, Medline, CASGoogle Scholar
    • 69  García-Martín E, Martínez C, Tabarés B, Frías J, Agúndez JA: Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin. Pharmacol. Ther.76(2),119–127 (2004).Crossref, Medline, CASGoogle Scholar
    • 70  Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G: CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin. Pharmacol. Ther.76(1),18–26 (2004).Crossref, Medline, CASGoogle Scholar
    • 71  Peiró AM, Novalbos J, Zapater P et al.: Pharmacogenetic relevance of the CYP2C9*3 allele in a tenoxicam bioequivalence study performed on Spaniards. Pharmacol. Res.59(1),62–68 (2009).Crossref, Medline, CASGoogle Scholar
    • 72  Perini JA, Vianna-Jorge R, Brogliato AR, Suarez-Kurtz G: Influence of CYP2C9 genotypes on the pharmacokinetics and pharmacodynamics of piroxicam. Clin. Pharmacol. Ther.78(4),362–369 (2005).Crossref, Medline, CASGoogle Scholar
    • 73  Guo Y, Zhang Y, Wang Y et al.: Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in humans. Drug Metab. Dispos.33(6),749–753 (2005).Crossref, Medline, CASGoogle Scholar
    • 74  Liu YL, Zhang W, Tan ZR et al.: Effect of the CYP2C9*3 allele on lornoxicam metabolism. Clin. Chim. Acta364(1–2),287–291 (2006).Crossref, Medline, CASGoogle Scholar
    • 75  Dorado P, Cavaco I, Cáceres MC, Piedade R, Ribeiro V, Llerena A: Relationship between CYP2C8 genotypes and diclofenac 5-hydroxylation in healthy Spanish volunteers. Eur. J. Clin. Pharmacol.64(10),967–970 (2008).Crossref, Medline, CASGoogle Scholar
    • 76  Daily EB, Aquilante CL: Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics10(9),1489–1510 (2009).Link, CASGoogle Scholar
    • 77  Visser LE, van Vliet M, van Schaik RH et al.: The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics14(1),27–33 (2004).Crossref, Medline, CASGoogle Scholar
    • 78  Pilotto A, Franceschi M, Vitale DF et al.: Upper gastrointestinal symptoms and therapies in elderly out-patients, users of non-selective NSAIDs or coxibs. Aliment. Pharmacol. Ther.22(2),147–155 (2005).Crossref, Medline, CASGoogle Scholar
    • 79  Blanco G, Martínez C, Ladero JM: Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet. Genomics18(1),37–43 (2008).Crossref, Medline, CASGoogle Scholar
    • 80  Vonkeman HE, van de Laar MA, van der Palen J, Brouwers JR, Vermes I: Allele variants of the cytochrome P450 2C9 genotype in white subjects from The Netherlands with serious gastroduodenal ulcers attributable to the use of NSAIDs. Clin. Ther.28(10),1670–1676 (2006).Crossref, Medline, CASGoogle Scholar
    • 81  Ma J, Yang XY, Qiao L, Liang LQ, Chen MH: CYP2C9 polymorphism in non-steroidal anti-inflammatory drugs-induced gastropathy. J. Dig. Dis.9(2),79–83 (2008).Crossref, Medline, CASGoogle Scholar
    • 82  Agúndez JA, García-Martín E, Martínez C: Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin. Drug Metab. Toxicol.5(6),607–620 (2009).Crossref, Medline, CASGoogle Scholar
    • 83  Harder S, Thürmann P: Clinically important drug interactions with anticoagulants. An update. Clin. Pharmacokinet.30(6),416–444 (1996).Crossref, Medline, CASGoogle Scholar
    • 84  Visser LE, van Schaik RH, van Vliet M et al.: Allelic variants of cytochrome P450 2C9 modify the interaction between nonsteroidal anti-inflammatory drugs and coumarin anticoagulants. Clin. Pharmacol. Ther.77(6),479–485 (2005).Crossref, Medline, CASGoogle Scholar
    • 85  Park HJ, Shinn HK, Ryu SH, Lee HS, Park CS, Kang JH: Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin. Pharmacol. Ther.81(4),539–546 (2007).Crossref, Medline, CASGoogle Scholar
    • 86  Zwisler ST, Enggaard TP, Noehr-Jensen L et al.: The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam. Clin. Pharmacol. (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 87  Campa D, Gioia A, Tomei A, Poli P, Barale R: Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin. Pharmacol. Ther.83(4),559–566 (2008).Crossref, Medline, CASGoogle Scholar
    • 88  Lötsch J, von Hentig N, Freynhagen R et al.: Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet. Genomics19(6),429–436 (2009).Crossref, MedlineGoogle Scholar
    • 89  Levran O, O’Hara K, Peles E et al.: ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum. Mol. Genet.17(14),2219–2227 (2008).Crossref, Medline, CASGoogle Scholar
    • 90  Coller JK, Barratt DT, Dahlen K, Loennechen MH, Somogyi AA: ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin. Pharmacol. Ther.80(6),682–690 (2006).Crossref, Medline, CASGoogle Scholar
    • 91  Crettol S, Déglon JJ, Besson J et al.: No influence of ABCB1 haplotypes on methadone dosage requirement. Clin. Pharmacol. Ther.83(5),668–669 (2008).Crossref, Medline, CASGoogle Scholar
    • 92  Lee YS, Kim H, Wu TX, Wang XM, Dionne RA: Genetically mediated interindividual variation in analgesic responses to cyclooxygenase inhibitory drugs. Clin. Pharmacol. Ther.79(5),407–418 (2006).Crossref, Medline, CASGoogle Scholar
    • 93  Skarke C, Reus M, Schmidt R et al.: The cyclooxygenase 2 genetic variant -765G>C does not modulate the effects of celecoxib on prostaglandin E2 production. Clin. Pharmacol. Ther.80(6),621–632 (2006).Crossref, Medline, CASGoogle Scholar
    • 94  Ono T, Muto A, Kaneda T, Arita E, Yoshida T: Novel linkage disequilibrium of single nucleotide polymorphisms in the transcriptional regulatory region of micro-opioid receptor gene in Japanese population. Biol. Pharm. Bull.32(4),721–773 (2009).Crossref, Medline, CASGoogle Scholar
    • 95  Chou WY, Yang LC, Lu HF et al.: Association of µ-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol. Scand.50(7),787–792 (2006).Crossref, Medline, CASGoogle Scholar
    • 96  Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B: Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology105(2),334–337 (2006).Crossref, Medline, CASGoogle Scholar
    • 97  Oertel BG, Kettner M, Scholich K et al.: A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J. Biol. Chem.284(10),6530–6535 (2009).Crossref, Medline, CASGoogle Scholar
    • 98  Klepstad P, Rakvag TT, Kaasa S et al.: The 118 A > G polymorphism in the human µ-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol. Scand.48(10),1232–1239 (2004).Crossref, Medline, CASGoogle Scholar
    • 99  Walter C, Lötsch J: Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain146(3),270–275 (2009).▪▪ Very recent meta-analysis of the association of the OPMR1 A118G polymorphism.Crossref, Medline, CASGoogle Scholar
    • 100  Janicki PK, Schuler G, Francis D et al.: A genetic association study of the functional A118G polymorphism of the human µ-opioid receptor gene in patients with acute and chronic pain. Anesth. Analg.103(4),1011–1017 (2006).Crossref, Medline, CASGoogle Scholar
    • 101  Coulbault L, Beaussier M, Verstuyft C et al.: Environmental and genetic factors associated with morphine response in the postoperative period. Clin. Pharmacol. Ther.79(4),316–324 (2006).Crossref, Medline, CASGoogle Scholar
    • 102  Huehne K, Leis S, Muenster T et al.: High post surgical opioid requirements in Crohn’s disease are not due to a general change in pain sensitivity. Eur. J. Pain13(10),1036–1042 (2009).Crossref, Medline, CASGoogle Scholar
    • 103  Landau R, Kern C, Columb MO, Smiley RM, Blouin JL: Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women. Pain139(1),5–14 (2008).▪▪ Demonstrates contrasting results to most other genetic association studies of OPRM1 with higher opioid requirements in A118G wild-type carriers.Crossref, Medline, CASGoogle Scholar
    • 104  Landau R: One size does not fit all: genetic variability of µ-opioid receptor and postoperative morphine consumption. Anesthesiology105(2),235–237 (2006).Crossref, MedlineGoogle Scholar
    • 105  Lötsch J. Basic genetic statistics are necessary in studies of functional association in anesthesiology. Anesthesiology107,168–169 (2007).Crossref, MedlineGoogle Scholar
    • 106  Chanock SJ, Manolio T, Boehnke M et al.; NCI-NHGRI Working Group on Replication in Association Studies: Replicating genotype–phenotype associations. Nature447(7145),655–660 (2007).▪▪ Excellent guidelines for investigators planning to perform a genetic association study, particularly if previous study results have already been published.Crossref, Medline, CASGoogle Scholar
    • 107  Zubieta JK, Heitzeg MM, Smith YR et al.: Val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science299(5610),1240–1243 (2003).Crossref, Medline, CASGoogle Scholar
    • 108  Rakvåg TT, Klepstad P, Baar C et al.: The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain116(1–2),73–78 (2005).Crossref, Medline, CASGoogle Scholar
    • 109  Reyes-Gibby CC, Shete S, Rakvåg T et al.: Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain130(1–2),25–30 (2007).Crossref, Medline, CASGoogle Scholar
    • 110  Kim H, Neubert JK, San Miguel A et al.: Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain109(3),488–496 (2004).Crossref, MedlineGoogle Scholar
    • 111  Kim H, Lee H, Rowan J, Brahim J, Dionne RA: Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans. Mol. Pain.18(2),24 (2006).Google Scholar
    • 112  Birklein F, Depmeier C, Rolke R et al.: A family-based investigation of cold pain tolerance. Pain138(1),111–118 (2008).Crossref, Medline, CASGoogle Scholar
    • 113  Rakvåg TT, Ross JR, Sato H, Skorpen F, Kaasa S, Klepstad P: Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain. Mol. Pain.18(4),64 (2008).Google Scholar
    • 114  Ross JR, Riley J, Taegetmeyer AB et al.: Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer112(6),1390–1403 (2008).Crossref, Medline, CASGoogle Scholar
    • 115  Lacroix-Fralish ML, Mogil JS. Progress in genetic studies of pain and analgesia. Annu. Rev. Pharmacol. Toxicol.49,97–121 (2009).Crossref, Medline, CASGoogle Scholar
    • 116  Kim H, Clark D, Dionne RA: Genetic contributions to clinical pain and analgesia: avoiding pitfalls in genetic research. J. Pain10(7),663–693 (2009).Crossref, MedlineGoogle Scholar
    • 117  Lötsch J, Flühr K, Neddermayer T, Doehring A, Geisslinger G: The consequence of concomitantly present functional genetic variants for the identification of functional genotype-phenotype associations in pain. Clin. Pharmacol. Ther.85(1),25–30 (2009).Crossref, Medline, CASGoogle Scholar
    • 118  Kim H, Ramsay E, Lee H, Wahl S, Dionne RA: Genome-wide association study of acute post-surgical pain in humans. Pharmacogenomics10(2),171–179 (2009).▪▪ First published genome-wide association study on postoperative pain up to date.Link, CASGoogle Scholar
    • 119  Tegeder I, Lötsch J: Current evidence for a modulation of low back pain by human genetic variants. J. Cell Mol. Med. (2009) (Epub ahead of print).MedlineGoogle Scholar
    • 120  Somogyi AA, Barratt DT, Coller JK: Pharmacogenetics of opioids. Clin. Pharmacol. Ther.81(3),429–444 (2007).Crossref, Medline, CASGoogle Scholar
    • 121  Slade GD, Diatchenko L, Bhalang K et al.: Influence of psychological factors on risk of temporomandibular disorders. J. Dent. Res.86(11),1120–1125 (2007).Crossref, Medline, CASGoogle Scholar
    • 122  George SZ, Wallace MR, Wright TW et al.: Evidence for a biopsychosocial influence on shoulder pain: pain catastrophizing and catechol-O-methyltransferase (COMT) diplotype predict clinical pain ratings. Pain136(1–2),53–61 (2008).Crossref, Medline, CASGoogle Scholar
    • 123  Hapgood R: The potential and limitations of personalized medicine in the doctor-patient relationship. Pharmacogenomics4(6),685–687 (2003).LinkGoogle Scholar
    • 124  López-Rodríguez R, Novalbos J, Gallego-Sandín S et al.: Influence of CYP2C8 and CYP2C9 polymorphisms on pharmacokinetic and pharmacodynamic parameters of racemic and enantiomeric forms of ibuprofen in healthy volunteers. Pharmacol. Res.58(1),77–84 (2008).Crossref, Medline, CASGoogle Scholar
    • 125  Bae JW, Kim JH, Choi CI et al: Effect of CYP2C9*3 allele on the pharmacokinetics of naproxen in Korean subjects. Arch. Pharm. Res.32(2),269–273 (2009).Crossref, Medline, CASGoogle Scholar
    • 126  Huang CJ, Liu HF, Su NY et al.: Association between human opioid receptor genes polymorphisms and pressure pain sensitivity in females. Anaesthesia63(12),1288–1295 (2008).Crossref, Medline, CASGoogle Scholar
    • 127  Sia AT, Lim Y, Lim EC et al.: A118G single nucleotide polymorphism of human µ-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology109(3),520–526 (2008).Crossref, Medline, CASGoogle Scholar
    • 128  Hayashida M, Nagashima M, Satoh Y et al.: Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics9(11),1605–1616 (2008).Link, CASGoogle Scholar
    • 129  Fukuda K, Hayashida M, Ide S et al.: Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain147(1–3),194–201 (2009).Crossref, Medline, CASGoogle Scholar
    • 130  Tan EC, Lim EC, Teo YY, Lim Y, Law HY, Sia AT: Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain. Mol. Pain.23(5),32 (2009).▪▪ Clinical study enrolling Chinese, Malay and Indian women, demonstrating an influence of ethnicity and OPRM1 on pain, analgesic consumption and side effects.Google Scholar
    • 131  Wu WD, Wang Y, Fang YM, Zhou HY: Polymorphism of the mu-opioid receptor gene (OPRM1 118A>G) affects fentanyl-induced analgesia during anesthesia and recovery. Mol. Diagn. Ther.13(5),331–337 (2009).Crossref, Medline, CASGoogle Scholar
    • 132  Ginosar Y, Davidson EM, Meroz Y, Blotnick S, Shacham M, Caraco Y: Mu-opioid receptor (A118G) single-nucleotide polymorphism affects alfentanil requirements for extracorporeal shock wave lithotripsy: a pharmacokinetic–pharmacodynamic study. Br. J. Anaesth.103(3),420–427 (2009).Crossref, Medline, CASGoogle Scholar
    • 201  Flockhart DA: Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine (2007) http://medicine.iupui.edu/clinpharm/ddis/table.asp (Accessed November 2009)Google Scholar
    • 202  Home Page of the CYP Allele Nomenclature Committee www.imm.ki.se/CYPalleles/ (Accessed November 2009)Google Scholar
    • 203  NCBI SNP database www.ncbi.nlm.nih.gov/SNP (Accessed November 2009)Google Scholar