We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Breast cancer pharmacogenetics: a systematic review

    Mariana M Scudeler

    Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil

    ,
    Caíque Manóchio

    Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil

    ,
    Alex J Braga Pinto

    Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil

    ,
    Heithor dos Santos Cirino

    Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil

    Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil

    ,
    Cléber S da Silva

    Departamento de Ginecologia e Obstetrícia, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil

    Departamento de Cirurgia de Mama, Hospital Hélio Angotti, Uberaba, Minas Gerais, 38010-180, Brazil

    &
    Fernanda Rodrigues-Soares

    *Author for correspondence: Tel.: +55 343 700 6434;

    E-mail Address: fernanda.soares@uftm.edu.br

    Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil

    Published Online:https://doi.org/10.2217/pgs-2022-0144

    Breast cancer was declared the most prevalent type of cancer in 2020. Among other factors, treatment response can be affected by genetic polymorphisms – which is the focus of pharmacogenetics – and ethnicity is also a contributing factor in this context. Relevant genes in disease treatment pathways were selected to evaluate treatment response from the pharmacogenetic perspective; polymorphism frequencies and ethnic and continental representation across the available literature were also assessed through a systematic review. The identified associations and gaps have been described in this study with the purpose that, in the future, treatments can be personalized and thus be more effective, safer, and accessible to all.

    References

    • 1. Scudeler MM, Rodrigues-Soares F. Farmacogenética na América Latina. Acta Biol. Bras. 3(2), 85–100 (2020).
    • 2. Suarez-Kurtz G. Pharmacogenetic testing in oncology: a Brazilian perspective. Clinics 73(Suppl. 1), 1–12 (2018).
    • 3. Borges-Osório MR, Robinson WM. Genética Humana. (3rd Edition). Artmed, Porto Alegre (2013).
    • 4. Nussbaum RL. Thompson & Thompson Genética Médica. (8th Edition). GEN Guanabara Koogan, Rio de Janeiro (2019).
    • 5. Baxter SD, Teft WA, Choi Y-H, Winquist E, Kim RB. Tamoxifen-associated hot flash severity is inversely correlated with endoxifen concentration and CYP3A4*22. Breast Cancer Res. Treat. 145(2), 419–428 (2014).
    • 6. Abdul Aziz AA, MD Salleh MS, Mohamad I et al. Single-nucleotide polymorphisms and mRNA expression of CYP1B1 influence treatment response in triple negative breast cancer patients undergoing chemotherapy. J. Genet. 97(5), 1185–1194 (2018).
    • 7. Kuo S-H, Yang S-Y, You S-L et al. Polymorphisms of ESR1, UGT1A1, HCN1, MAP3K1 and CYP2B6 are associated with the prognosis of hormone receptor-positive early breast cancer. Oncotarget 8(13), 20925–20938 (2017).
    • 8. Oesterreich S, Henry NL, Kidwell KM et al. Associations between genetic variants and the effect of letrozole and exemestane on bone mass and bone turnover. Breast Cancer Res. Treat. 154(2), 263–273 (2015).
    • 9. Hoff DD Von, Han H. Precision Medicine in Cancer Therapy. Springer International Publishing, Cham (2019).
    • 10. Tsang JYS, Tse GM. Molecular classification of breast cancer. Adv. Anat. Pathol. 27(1), 27–35 (2020).
    • 11. Ahmad A. Breast Cancer Metastasis and Drug Resistance (Chap. 1) (2nd Edition). Springer International Publishing, Cham (2019).
    • 12. Libson S, Lippman M. A review of clinical aspects of breast cancer. Int. Rev. Psychiatry 26(1), 4–15 (2014).
    • 13. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet 397(10286), 1750–1769 (2021).
    • 14. Cirqueira MB, Amaral M, Moreira R, Soares LR, Freitas-Júnior R. Subtipos moleculares do câncer de mama. FEMINA 39(10), 499–503 (2011).
    • 15. Serra KP, Ramalho S, Torresan R et al. Nova classificação dos carcinomas da mama: procurando o luminal A. Rev. Bras. Ginecol. Obs. 36(12), 575–580 (2014).
    • 16. Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res. 17(1), 60 (2015).
    • 17. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360(8), 790–800 (2009).
    • 18. Maughan KL, Lutterbie MA, Ham PS. Treatment of breast cancer. Am. Fam. Physician 81(11), 1339–1346 (2010).
    • 19. Dean L. Tamoxifen Therapy and CYP2D6 Genotype. In: Medical Genetics Summaries [Internet]. Victoria MPStuart ASMunir PBernard EBrandi LKAdriana JM (Eds). National Center for Biotechnology Information (US), Bethesda (MD) (2012).
    • 20. Goetz MP, Sangkuhl K, Guchelaar H-J et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin. Pharmacol. Ther. 103(5), 770–777 (2018).
    • 21. Greenwalt I, Zaza N, Das S, Li BD. Precision medicine and targeted therapies in breast cancer. Surg. Oncol. Clin. N. Am. 29(1), 51–62 (2020).
    • 22. Waks AG, Winer EP. Breast cancer treatment. JAMA 321(3), 288 (2019).
    • 23. Chan CWH, Law BMH, So WKW, Chow KM, Waye MMY. Pharmacogenomics of breast cancer: highlighting CYP2D6 and tamoxifen. J. Cancer Res. Clin. Oncol. 146(6), 1395–1404 (2020).
    • 24. Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. 19(1), 20–29 (2017).
    • 25. Suarez-Kurtz G, Parra EJ. Population diversity in pharmacogenetics: a Latin American perspective. In: Advances in Pharmacology. Academic Press Inc, 83, 133–154 (2018).
    • 26. Wojcik GL, Graff M, Nishimura KK et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570(7762), 514–518 (2019).
    • 27. Krainc T, Fuentes A. Genetic ancestry in precision medicine is reshaping the race debate. Proc. Natl Acad. Sci. 119(12), (2022).
    • 28. Hertz DL, Roy S, Jack J et al. Genetic heterogeneity beyond CYP2C8*3 does not explain differential sensitivity to paclitaxel-induced neuropathy. Breast Cancer Res. Treat. 145(1), 245–254 (2014).
    • 29. Mafu T, September AV, Shamley D. KDR inferred haplotype is associated with upper limb dysfunction in breast cancer survivors of mixed ancestry. Cancer Manag. Res. 11, 3829–3845 (2019).
    • 30. Seredina TA, Goreva OB, Talaban VO, Grishanova AY, Lyakhovich VV. Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients. BMC Med. Genet. 13(1), 45 (2012).
    • 31. Wang J, Lu K, Song Y et al. Indications of clinical and genetic predictors for aromatase inhibitors related musculoskeletal adverse events in Chinese Han women with breast cancer. PLOS ONE 8(7), e68798 (2013).
    • 32. Mao JJ, Su HI, Feng R et al. Association of functional polymorphisms in CYP19A1 with aromatase inhibitor associated arthralgia in breast cancer survivors. Breast Cancer Res. 13(1), R8 (2011).
    • 33. Choi J-Y, Barlow WE, Albain KS et al. Nitric oxide synthase variants and disease-free survival among treated and untreated breast cancer patients in a Southwest Oncology Group clinical trial. Clin. Cancer Res. 15(16), 5258–5266 (2009).
    • 34. Terrazzino S, La Mattina P, Masini L et al. Common variants of eNOS and XRCC1 genes may predict acute skin toxicity in breast cancer patients receiving radiotherapy after breast conserving surgery. Radiother. Oncol. 103(2), 199–205 (2012).
    • 35. Córdoba EE, Abba MC, Lacunza E, Fernánde E, Güerci AM. Polymorphic variants in oxidative stress genes and acute toxicity in breast cancer patients receiving radiotherapy. Cancer Res. Treat. 48(3), 948–954 (2016).
    • 36. Mazzuca F, Botticelli A, Mazzotti E et al. CYP19A1 genetic polymorphisms rs4646 and osteoporosis in patients treated with aromatase inhibitor-based adjuvant therapy. Eurasian J. Med. 48(1), 10–14 (2016).
    • 37. Santa-Maria CA, Blackford A, Nguyen AT et al. Association of variants in candidate genes with lipid profiles in women with early breast cancer on adjuvant aromatase inhibitor therapy. Clin. Cancer Res. 22(6), 1395–1402 (2016).
    • 38. Umamaheswaran G, Kadambari D, Muthuvel SK et al. Association of CYP19A1 gene variations with adjuvant letrozole-induced adverse events in South Indian postmenopausal breast cancer cohort expressing hormone-receptor positivity. Breast Cancer Res. Treat. 182(1), 147–158 (2020).
    • 39. Park IH, Lee Y-S, Lee KS et al. Single nucleotide polymorphisms of CYP19A1 predict clinical outcomes and adverse events associated with letrozole in patients with metastatic breast cancer. Cancer Chemother. Pharmacol. 68(5), 1263–1271 (2011).
    • 40. Garcia-Casado Z, Guerrero-Zotano A, Llombart-Cussac A et al. A polymorphism at the 3′-UTR region of the aromatase gene defines a subgroup of postmenopausal breast cancer patients with poor response to neoadjuvant letrozole. BMC Cancer 10, 36 (2010).
    • 41. Napoli N, Rastelli A, Ma C et al. Genetic polymorphism at Val80 (rs700518) of the CYP19A1 gene is associated with aromatase inhibitor associated bone loss in women with ER (+) breast cancer. Bone 55(2), 309–314 (2013).
    • 42. Armamento-Villareal R, Shah VO, Aguirre LE, Meisner ALW, Qualls C, Royce ME. The rs4646 and rs12592697 polymorphisms in CYP19A1 are associated with disease progression among patients with breast cancer from different racial/ethnic backgrounds. Front. Genet. 7, 211 (2016).
    • 43. Rumiato E, Brunello A, Ahcene-Djaballah S et al. Predictive markers in elderly patients with estrogen receptor-positive breast cancer treated with aromatase inhibitors: an array-based pharmacogenetic study. Pharmacogenomics J. 16(6), 525–529 (2016).
    • 44. Borrie AE, Rose FA, Choi Y-H et al. Genetic and clinical predictors of arthralgia during letrozole or anastrozole therapy in breast cancer patients. Breast Cancer Res. Treat. 183(2), 365–372 (2020).
    • 45. Ntukidem N, Nguyen A, Stearns V et al. Estrogen receptor genotypes, menopausal status, and the lipid effects of tamoxifen. Clin. Pharmacol. Ther. 83(5), 702–710 (2008).
    • 46. Onitilo AA, McCarty CA, Wilke RA et al. Estrogen receptor genotype is associated with risk of venous thromboembolism during tamoxifen therapy. Breast Cancer Res. Treat. 115(3), 643–650 (2009).
    • 47. Markiewicz A, Wełnicka-Jaśkiewicz M, Skokowski J et al. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients. PLOS ONE 8(8), e72219 (2013).
    • 48. Puszkiel A, Arellano C, Vachoux C et al. Factors affecting tamoxifen metabolism in patients with breast cancer: preliminary results of the French PHACS study. Clin. Pharmacol. Ther. 106(3), 585–595 (2019).
    • 49. Bosó V, Herrero MJ, Santaballa A et al. SNPs and taxane toxicity in breast cancer patients. Pharmacogenomics 15(15), 1845–1858 (2014).
    • 50. Hertz DL, Motsinger-Reif AA, Drobish A et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res. Treat. 134(1), 401–410 (2012).
    • 51. Lam SW, Frederiks CN, van der Straaten T, Honkoop AH, Guchelaar H-J, Boven E. Genotypes of CYP2C8 and FGD4 and their association with peripheral neuropathy or early dose reduction in paclitaxel-treated breast cancer patients. Br. J. Cancer 115(11), 1335–1342 (2016).
    • 52. Marsh S, Somlo G, Li X et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J. 7(5), 362–365 (2007).
    • 53. Henry NL, Skaar TC, Dantzer J et al. Genetic associations with toxicity-related discontinuation of aromatase inhibitor therapy for breast cancer. Breast Cancer Res. Treat. 138(3), 807–816 (2013).
    • 54. Johansson H, Aristarco V, Gandini S et al. Prognostic impact of genetic variants of CYP19A1 and UGT2B17 in a randomized trial for endocrine-responsive postmenopausal breast cancer. Pharmacogenomics J. 20(1), 19–26 (2020).
    • 55. Johansson H, Gray KP, Pagani O et al. Impact of CYP19A1 and ESR1 variants on early-onset side effects during combined endocrine therapy in the TEXT trial. Breast Cancer Res. 18(1), 110 (2016).
    • 56. Hertz DL, Kidwell KM, Seewald NJ et al. Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer. Pharmacogenomics J. 17(6), 521–527 (2017).
    • 57. Ruiz-Pinto S, Martin M, Pita G et al. Pharmacogenetic variants and response to neoadjuvant single-agent doxorubicin or docetaxel: a study in locally advanced breast cancer patients participating in the NCT00123929 phase 2 randomized trial. Pharmacogenet. Genomics 28(11), 245–250 (2018).
    • 58. Kuş T, Aktas G, Kalender ME et al. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. Onco. Targets. Ther. 9, 5073–5080 (2016).
    • 59. Tulsyan S, Chaturvedi P, Singh AK et al. Assessment of clinical outcomes in breast cancer patients treated with taxanes: multi-analytical approach. Gene 543(1), 69–75 (2014).
    • 60. Rizzo R, Spaggiari F, Indelli M et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res. Treat. 124(2), 593–598 (2010).
    • 61. Palomba G, Atzori F, Budroni M et al. ERCC1 polymorphisms as prognostic markers in T4 breast cancer patients treated with platinum-based chemotherapy. J. Transl. Med. 12(1), 272 (2014).
    • 62. Gervasini G, Jara C, Olier C, Romero N, Martínez R, Carrillo JA. Polymorphisms in ABCB1 and CYP19A1 genes affect anastrozole plasma concentrations and clinical outcomes in postmenopausal breast cancer patients. Br. J. Clin. Pharmacol. 83(3), 562–571 (2017).
    • 63. Liu L, Bai Y-X, Zhou J-H et al. A polymorphism at the 3′-UTR region of the aromatase gene is associated with the efficacy of the aromatase inhibitor, anastrozole, in metastatic breast carcinoma. Int. J. Mol. Sci. 14(9), 18973–18988 (2013).
    • 64. Tsuji D, Ikeda M, Yamamoto K et al. Drug-related genetic polymorphisms affecting severe chemotherapy-induced neutropenia in breast cancer patients. Medicine (Baltimore) 95(44), e5151 (2016).
    • 65. Tang NLS, Liao C Di, Wang X et al. Role of pharmacogenetics on adjuvant chemotherapy-induced neutropenia in Chinese breast cancer patients. J. Cancer Res. Clin. Oncol. 139(3), 419–427 (2013).
    • 66. Tecza K, Pamula-Pilat J, Lanuszewska J, Butkiewicz D, Grzybowska E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget 9(10), 9114–9136 (2018).
    • 67. Su HI, Sammel MD, Velders L et al. Association of cyclophosphamide drug-metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. Fertil. Steril. 94(2), 645–654 (2010).
    • 68. Gor PP, Su HI, Gray RJ et al. Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res. 12(3), R26 (2010).
    • 69. Pellegrino B, Cavanna L, Boggiani D et al. Phase II study of eribulin in combination with gemcitabine for the treatment of patients with locally advanced or metastatic triple negative breast cancer (ERIGE trial). Clinical and pharmacogenetic results on behalf of the Gruppo Oncologico Italiano di R. ESMO Open 6(1), 100019 (2021).
    • 70. Tulsyan S, Agarwal G, Lal P, Mittal B. Significant role of CYP450 genetic variants in cyclophosphamide based breast cancer treatment outcomes: a multi-analytical strategy. Clin. Chim. Acta 434, 21–28 (2014).
    • 71. Dumont A, Pannier D, Ducoulombier A et al. ERCC1 and CYP1B1 polymorphisms as predictors of response to neoadjuvant chemotherapy in estrogen positive breast tumors. Springerplus 4(1), 327 (2015).
    • 72. Iwata H, Umeyama Y, Liu Y et al. Evaluation of the association of polymorphisms with palbociclib-induced neutropenia: pharmacogenetic analysis of PALOMA-2/-3. Oncologist 26(7), e1143–e1155 (2021).
    • 73. Pascual T, Apellániz-Ruiz M, Pernaut C et al. Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLOS ONE 12(7), e0180192 (2017).
    • 74. Shao X, Luo L, Guo Y et al. Rs1008805 polymorphism of CYP19A1 gene is associated with the efficacy of hormone therapy in stage I–II and operable stage III breast cancer. Oncol. Lett. 14(5), 6156–6162 (2017).
    • 75. Crucitta S, Restante G, Del Re M et al. Endothelial nitric oxide synthase c.-813C>T predicts for proteinuria in metastatic breast cancer patients treated with bevacizumab-based chemotherapy. Cancer Chemother. Pharmacol. 84(6), 1219–1227 (2019).
    • 76. Bewick MA, Lafrenie RM, Conlon MSC. Nucleotide excision repair polymorphisms and survival outcome for patients with metastatic breast cancer. J. Cancer Res. Clin. Oncol. 137(3), 543–550 (2011).
    • 77. Di Salvatore M, Lo Giudice L, Rossi E et al. Association of IL-8 and eNOS polymorphisms with clinical outcomes in bevacizumab-treated breast cancer patients: an exploratory analysis. Clin. Transl. Oncol. 18(1), 40–46 (2016).
    • 78. Le Morvan V, Litière S, Laroche-Clary A et al. Identification of SNPs associated with response of breast cancer patients to neoadjuvant chemotherapy in the EORTC-10994 randomized phase III trial. Pharmacogenomics J. 15(1), 63–68 (2015).
    • 79. Sosa-Macías M, Teran E, Waters W et al. Pharmacogenetics and ethnicity: relevance for clinical implementation, clinical trials, pharmacovigilance and drug regulation in Latin America. Pharmacogenomics 17(16), 1741–1747 (2016).
    • 80. Ramos E, Doumatey A, Elkahloun AG et al. Pharmacogenomics, ancestry and clinical decision making for global populations. Pharmacogenomics J. 14(3), 217–222 (2014).
    • 81. Moreira RG, Saraiva‐Duarte JM, Pereira AC et al. Population genetics of PDE4B (phosphodiesterase‐4B) in neglected Native Americans: i mplications for cancer pharmacogenetics. Clin. Transl. Sci. (2022).
    • 82. Yedjou CG, Sims JN, Miele L et al. Health and racial disparity in breast cancer. Advances in Experimental Medicine and Biology (Adv Exp Med Biol) 1152, 31–49 (2019).
    • 83. Murphy E, Hou L, Maher BS et al. Race, genetic ancestry and response to antidepressant treatment for major depression. Neuropsychopharmacology 38(13), 2598–2606 (2013).
    • 84. Fohner A, Muzquiz LI, Austin MA et al. Pharmacogenetics in American Indian populations: analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes. Pharmacogenet. Genomics 23(8), 403–414 (2013).
    • 85. Khan BA, Robinson R, Fohner AE et al. Cytochrome P450 genetic variation associated with tamoxifen biotransformation in American Indian and Alaska Native people. Clin. Transl. Sci. 11(3), 312–321 (2018).
    • 86. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell 177(4), 1080 (2019).
    • 87. Urban TJ. Race, ethnicity, ancestry, and pharmacogenetics. Mt. Sinai J. Med. 77(2), 133–139 (2010).
    • 88. Pimenta JR, Zuccherato LW, Debes AA et al. Color and genomic ancestry in Brazilians: a study with forensic microsatellites. Hum. Hered. 62(4), 190–195 (2006).
    • 89. Suarez-Kurtz G, Vargens DD, Struchiner CJ, Bastos-Rodrigues L, Pena SDJ. Self-reported skin color, genomic ancestry and the distribution of GST polymorphisms. Pharmacogenet. Genomics 17(9), 765–771 (2007).
    • 90. Yang H-C, Chen C-W, Lin Y-T, Chu S-K. Genetic ancestry plays a central role in population pharmacogenomics. Commun. Biol. 4(1), 171 (2021).
    • 91. Whirl‐Carrillo M, Huddart R, Gong L et al. An evidence‐based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 110(3), 563–572 (2021).
    • 92. Nakanishi G, Bertagnolli LS, Pita-Oliveira M et al. GSTM1 and GSTT1 polymorphisms in healthy volunteers – a worldwide systematic review. Drug Metab. Rev. 54(1), 37–45 (2022).
    • 93. Gaikwad T, Ghosh K, Shetty S. VKORC1 and CYP2C9 genotype distribution in Asian countries. Thromb. Res. 134(3), 537–544 (2014).
    • 94. Ranzan IC, De Aguiar Neto AP, Furlan Neto R et al. Pathological response analysis of breast cancer in patients submitted to neoadjuvant therapy in a private clinic of Cascavel/PR. Res. Soc. Dev. 10(6), e18610615461 (2021).
    • 95. Hadfield KD, Newman WG. Pharmacogenetics of aromatase inhibitors. Pharmacogenomics 13(6), 699–707 (2012).