We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Polymorphisms of genes related to phase II metabolism and resistance to clopidogrel

    Abdullah Alkattan

    *Author for correspondence:

    E-mail Address: abdullahalkattan@gmail.com

    Planning and Research Department, General Directorate of School Health, Ministry of Health, Riyadh 11176, Saudi Arabia

    ,
    Ahmed Alkhalifah

    Department of Sales, Fresenius Kabi, Alhaya Medical Company, Riyadh, Saudi Arabia

    ,
    Eman Alsalameen

    Department of Pharmacy, King Khalid University Hospital, Medical City King Saud University, Riyadh, Saudi Arabia

    ,
    Fatimah Alghanim

    Department of General Medicine, Faculty of Medicine, Imam Abdulrahman bin Faisal University

    &
    Nashwa Radwan

    Department of Public Health & Community Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt

    Department of Research, Assisting Deputyship for Primary Health Care, Ministry of Heath, Riyadh, Saudi Arabia

    Published Online:https://doi.org/10.2217/pgs-2021-0092

    Clopidogrel is an antiplatelet drug commonly used to prevent coagulation. This review aimed to investigate the effect of polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK and GLRX genes on clopidogrel during phase II metabolism through exploring previous studies. The results revealed that low glutathione plasma levels caused by several alleles related to these genes could affect the bioactivation process of the clopidogrel prodrug, making it unable to inhibit platelet aggregation perfectly and thus leading to severe consequences in patients with a high risk of blood coagulation. However, the study recommends platelet reactivity tests to predict clopidogrel efficacy rather than studying gene mutations, as most of these mutations are rare and other nongenetic factors could affect the drug’s efficacy.

    References

    • 1. Jung JH, Tantry US, Gurbel PA, Jeong YH. Current antiplatelet treatment strategy in patients with diabetes mellitus. Diabet. Metab. J. 39(2), 95–113 (2015).
    • 2. Bernlochner I, Sibbing D. Thienopyridines and other ADP-receptor antagonists. Handb. Exp. Pharmacol. 210, 165–198 (2012).
    • 3. Frelinger AL, Bhatt DL, Lee RD et al. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function. J. Am. Coll. Cardiol. 61(8), 872–879 (2013).
    • 4. Zhu Y, Zhou J. In vitro biotransformation studies of 2-oxo-clopidogrel: multiple thiolactone ring-opening pathways further attenuate prodrug activation. Chem. Res. Toxicol. 26(1), 179–190 (2013).
    • 5. Alkattan A, Alsalameen E. Polymorphisms of genes related to phase-I metabolic enzymes affecting the clinical efficacy and safety of clopidogrel treatment. Expert Opin. Drug Metab. Toxicol. 15, 1–1 (2021).
    • 6. Simon T .French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction (FAST-MI) Investigators. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 360(4), 363–375 (2009).
    • 7. Geisler T, Schaeffeler E, Dippon J et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 9(9), 1251–1259 (2008).
    • 8. Harmsze A, Van Werkum JW, Bouman HJ et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet. Genom. 20(1), 18–25 (2010).
    • 9. Alhazzani AA, Munisamy M, Karunakaran G. Pharmacogenetics of CYP2C19 genetic polymorphism on clopidogrel response in patients with ischemic stroke from Saudi Arabia. Neurosci. J. 22(1), 31–37 (2017).
    • 10. Al-Azzam SI, Alzoubi KH, Khabour OF et al. Factors that contribute to clopidogrel resistance in cardiovascular disease patients: environmental and genetic approach. Int. J. Clin. Pharmacol. Ther. 51(3), 179–186 (2013).
    • 11. Ayesh BM, Al-Astal IR, Yassin MM. The clinical effects of CYP2C19*2 allele frequency on Palestinian patients receiving clopidogrel after percutaneous coronary intervention. Int. J. Clin. Pharmacol. Ther. 41(1), 96–103 (2019).
    • 12. Khalil BM, Shahin MH, Solayman MH et al. Genetic and nongenetic factors affecting clopidogrel response in the Egyptian population. Clin. Trans. Sci. 9(1), 23–28 (2016).
    • 13. Mohammad AM, Al-Allawi NA. CYP2C19 genotype is an independent predictor of adverse cardiovascular outcome in Iraqi patients on clopidogrel after percutaneous coronary intervention. J. Cardiovasc. Pharmacol. 71(6), 347–351 (2018).
    • 14. Hagihara K, Kazui M, Kurihara A, Ikeda T, Izumi T. Glutaredoxin is involved in the formation of the pharmacologically active metabolite of clopidogrel from its GSH conjugate. Drug Metab. Dispos. 40(9), 1854–1859 (2012).
    • 15. Bubp J, Jen M, Matuszewski K. Caring for glucose-6-phosphate dehydrogenase (G6PD)-deficient patients: implications for pharmacy. Pharm. Ther. 40(9), 572 (2015).
    • 16. Berkholz DS, Faber HR, Savvides SN, Karplus PA. Catalytic cycle of human glutathione reductase near 1 Å resolution. J. Mol. Biol. 382(2), 371–384 (2008).
    • 17. Paramasivan K, Mutturi S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. J. Agricult. Food Chem. 65(37), 8162–8170 (2017).
    • 18. Alharbi KK, Khan IA, Abed AS, Syed R. Insertion/deletion polymorphisms do play any role in G6PD deficiency individuals in the Kingdom of the Saudi Arabia. Bioinformation 9(1), 49 (2013).
    • 19. Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A et al. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int. J. Mol. Sci. 17(12), 2069 (2016).
    • 20. McDonagh EM, Thorn CF, Bautista JM, Youngster I, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for G6PD. Pharmacogenet. Genom. 22(3), 219 (2012).
    • 21. Kashmoola MA, Eissa AA, Al-Takay DT, Al-Allawi NA. Molecular characterization of G6PD deficient variants in Nineveh Province, Northwestern Iraq. Indian J. Hematol. Blood Transfus. 31(1), 133–136 (2015).
    • 22. Sirdah M, Reading NS, Perkins SL, Shubair M, Aboud L, Prchal JT. Hemolysis and Mediterranean G6PD mutation (c.563 C>T) and c.1311 C>T polymorphism among Palestinians at Gaza Strip. Blood Cells Mol. Dis. 48(4), 203–208 (2012).
    • 23. Sanephonasa A, Cheepsunthorn CL, Khaminsou N, Savongsy O, Nuchprayoon I, Leecharoenkiat K. Molecular characterization of G6PD mutationsreveals the high frequency of G6PD Aures in the Lao Theung population. Malaria Journal 20(1), 1–9 (2021).
    • 24. Xu W, Westwood B, Bartsocas CS et al. Glucose-6phosphate dehydrogenase mutations and haplotypes in various ethnic groups.. Blood 85(1), 257 (1995).
    • 25. Sutton HE, Omenn GS, Fabry's disease: the search for a regulator genemutation in man. American journal of human genetics 24(3), 343(1972).
    • 26. Espinosa-Diez C, Fierro-Fernandez M, Sanchez-Gomez F et al. Targeting of gamma-glutamyl-cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-β-dependent fibrogenesis. Antiox. Redox Sig. 23(14), 1092–1105 (2015).
    • 27. Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med. 30(1–2), 86–98 (2009).
    • 28. Wang D, Curtis A, Papp AC, Koletar SL, Para MF. Polymorphism in glutamate cysteine ligase catalytic subunit (GCLC) is associated with sulfamethoxazole-induced hypersensitivity in HIV/AIDS patients. BMC Med. Genom. 5(1), 1–9 (2012).
    • 29. Campolo J, Penco S, Bianchi E et al. Glutamate-cysteine ligase polymorphism, hypertension, and male sex are associated with cardiovascular events. Biochemical and genetic characterization of Italian subpopulation. Am. Heart J. 154(6), 1123–1129 (2007).
    • 30. Lu SC. Glutathione synthesis. Biochim. Biophys. Acta 1830(5), 3143–3153 (2013).
    • 31. Xia H, Ye J, Wang L, Zhu J, He Z. A case of severe glutathione synthetase deficiency with novel GSS mutations. Braz. J. Med. Biol. Res. 51(3), e6853 (2018).
    • 32. Shi ZZ, Habib GM, Rhead WJ et al. Mutations in the glutathione synthetase gene cause 5–oxoprolinuria. Nat. Genet. 14(3), 361–365 (1996).
    • 33. Njålsson R, Ristoff E, Carlsson K, Winkler A, Larsson A, Norgren S. Genotype, enzyme activity, glutathione level, and clinical phenotype in patients with glutathione synthetase deficiency. Human Genet. 116(5), 384–389 (2005).
    • 34. Li X, Ding Y, Liu Y et al. Five Chinese patients with 5-oxoprolinuria due to glutathione synthetase and 5-oxoprolinase deficiencies. Brain Devel. 37(10), 952–959 (2015).
    • 35. Soylu Ustkoyuncu P, Mutlu FT, Kiraz A, Tag Balkis Z, Yel S. A rare cause of neonatal hemolytic anemia: glutathione synthetase deficiency. J. Pediatr. Hematol. Oncol. 40(1), e45–e49 (2018).
    • 36. Dong SC, Sha HH, Xu XY et al. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Design Devel. Ther. 12, 3535 (2018).
    • 37. Pearson WR, Vorachek WR, Xu SJ et al. Identification of class-mu glutathione transferase genes GSTM1–GSTM5 on human chromosome 1p13. Am. J. Human Genet. 53(1), 220 (1993).
    • 38. Hadami K, Dakka N, Bensaid M et al. Evaluation of glutathione S-transferase pi 1 expression and gene promoter methylation in Moroccan patients with urothelial bladder cancer. Mol. Genet. Genom. Med. 6(5), 819–827 (2018).
    • 39. Hansen KA, Eyster KM. Genetics and genomics of endometriosis. Clin. Obstet. Gynecol. 53(2), 403 (2010).
    • 40. Matsumura T, Imamichi Y, Mizutani T et al. Human glutathione S-transferase A (GSTA) family genes are regulated by steroidogenic factor 1 (SF-1) and are involved in steroidogenesis. FASEB J. 27(8), 3198–3208 (2013).
    • 41. Nebert DW, Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Human Genom. 1(6), 1–5 (2004).
    • 42. Adams CH, Werely CJ, Victor TC, Hoal EG, Rossouw G, van Helden PD. Allele frequencies for glutathione S-transferase and N-acetyltransferase 2 differ in African population groups and may be associated with oesophageal cancer or tuberculosis incidence. Clin. Chem. Lab. Med. 41(4), 600–605 (2003).
    • 43. Roodi N, Dupont WD, Moore JH, Parl FF. Association of homozygous wild-type glutathione S-transferase M1 genotype with increased breast cancer risk. Cancer Res. 64(4), 1233–1236 (2004).
    • 44. Sharma A, Pandey A, Sharma S et al. Genetic polymorphism of glutathione S-transferase P1 (GSTP1) in Delhi population and comparison with other global populations. Meta Gene 2, 134–142 (2014).
    • 45. Cho HJ, Lee SY, Ki CS, Kim JW. GSTM1, GSTT1 and GSTP1 polymorphisms in the Korean population. J. Korean Med. Sci. 20(6), 1089–1092 (2005).
    • 46. Bremer S, Fløisand Y, Brinch L, Gedde-Dahl T, Bergan S. Glutathione transferase gene variants influence busulfan pharmacokinetics and outcome after myeloablative conditioning. Therapeut. Drug Monit. 37(4), 493 (2015).
    • 47. Sharif MR, Sharif A, Kheirkhah D, Taghavi Ardakan M, Soltani N. Association of GSTO1 A140D and GSTO2 N142D gene variations with breast cancer risk. Asian Pac. J. Cancer Prev. 18(6), 1723–1727 (2017).
    • 48. White CW, Mimmack RF, Repine JE. Accumulation of lung tissue oxidized glutathione (GSSG) as a marker of oxidant induced lung injury. Chest 89(3), S111–S113 (1986).
    • 49. Pekkanen L, Rusi M. The effects of dietary niacin and riboflavin on voluntary intake and metabolism of ethanol in rats. Pharmacol. Biochem. Behav. 11(5), 575–579 (1979).
    • 50. Baity M, Wang L, Correa AM et al. Glutathione reductase (GSR) gene deletion and chromosome 8 aneuploidy in primary lung cancers detected by fluorescence in situ hybridization. Am. J. Cancer Res. 9(6), 1201 (2019).
    • 51. Kitoh R, Nishio SY, Usami SI. Prognostic impact of gene polymorphisms in patients with idiopathic sudden sensorineural hearing loss. Acta Otolaryngol. 137(Suppl. 565), S24–S29 (2017).
    • 52. Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem. Biophys. Res. Commun. 453(2), 220–228 (2014).
    • 53. Medrano A, García-Gil N, Ramió L et al. Hexose-specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa. Mol. Reprod. Devel. 73(9), 1179–1194 (2006).
    • 54. Zhang Z, Yang Z, Zhu B et al. Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PloS ONE 7(11), e49128 (2012).
    • 55. Harrington GN, Bush DR. The bifunctional role of hexokinase in metabolism and glucose signaling. Plant Cell 15(11), 2493–2496 (2003).
    • 56. Sullivan LS, Koboldt DC, Bowne SJ et al. A dominant mutation in hexokinase 1 (HK1) causes retinitis pigmentosa. Invest. Ophthalmol. Visual Sci. 55(11), 7147–7158 (2014).
    • 57. Suazo J, Pardo R, Castillo S et al. Family-based association study between SLC2A1, HK1, and LEPR polymorphisms with myelomeningocele in Chile. Reprod. Sci. 20(10), 1207–1214 (2013).
    • 58. Sevilla T, Martínez-Rubio D, Márquez C et al. Genetics of the Charcot–Marie–Tooth disease in the Spanish Gypsy population: the hereditary motor and sensory neuropathy–Russe in depth. Clin. Genet. 83(6), 565–570 (2013).
    • 59. Gabrikova D, Mistrik M, Bernasovska J et al. Founder mutations in NDRG1 and HK1 genes are common causes of inherited neuropathies among Roma/Gypsies in Slovakia. J. Appl. Genet. 54(4), 455–460 (2013).
    • 60. Liu H, Yang H, Wang X, Tu Y. The contribution of hexokinase 2 in glioma. Cancer Transl. Med. 4(2), 54 (2018).
    • 61. Lehto M, Huang X, Davis EM et al. Human hexokinase II gene: exon–intron organization, mutation screening in NIDDM, and its relationship to muscle hexokinase activity. Diabetologia 38(12), 1466–1474 (1995).
    • 62. Echwald SM, Bjørbaek C, Hansen T et al. Identification of four amino acid substitutions in hexokinase II and studies of relationships to NIDDM, glucose effectiveness, and insulin sensitivity. Diabetes 44(3), 347–353 (1995).
    • 63. Ardehali H, Tiller GE, Printz RL, Mochizuki H, Prochazka M, Granner DK. A novel (TA)n polymorphism in the hexokinase II gene: application to noninsulin-dependent diabetes mellitus in the Pima Indians. Human Genet. 97(4), 482–485 (1996).
    • 64. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: AKTing on mitochondria and TORCing to autophagy. Cell Death Diff. 22(2), 248–257 (2015).
    • 65. Rabbani N, Thornalley PJ. Hexokinase-2 glycolytic overload in diabetes and ischemia–reperfusion injury. Trends Endocrinol. Metab. 30(7), 419–431 (2019).
    • 66. Colosimo A, Calabrese G, Gennarelli M et al. Assignment of the hexokinase type 3 gene (HK3) to human chromosome band 5q35.3 by somatic cell hybrids and in situ hybridization. Cytogenet. Genome Res. 74(3), 187–188 (1996).
    • 67. Qin Y, Sun M, You L et al. ESR1, HK3 and BRSK1 gene variants are associated with both age at natural menopause and premature ovarian failure. Orphanet J. Rare Dis. 7(1), 1–6 (2012).
    • 68. Nishi S, Stoffel M, Xiang K, Shows TB, Bell GI, Takeda J. Human pancreatic beta-cell glucokinase: cDNA sequence and localization of the polymorphic gene to chromosome 7, band p13. Diabetologia 35(8), 743–747 (1992).
    • 69. Matschinsky FM, Wilson DF. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans. Front. Physiol. 10, 148 (2019).
    • 70. Wędrychowicz A, Tobór E, Wilk M et al. Phenotype heterogeneity in glucokinase–maturity-onset diabetes of the young (GCK-MODY) patients. J. Clin. Res. Pediatr. Endocrinol. 9(3), 246 (2017).
    • 71. Tinto N, Zagari A, Capuano M et al. Glucokinase gene mutations: structural and genotype-phenotype analyses in MODY children from South Italy. PloS ONE 3(4), e1870 (2008).
    • 72. Bonfig W, Hermanns S, Warncke K et al. GCK-MODY (MODY 2) caused by a novel p.Phe330Ser mutation. Int. Schol. Res. Notices 2011, 676549 (2011).
    • 73. Lukášová P, Vcelak J, Vankova M, Vejražková D, Andelova K, Bendlova B. Screening of mutations and polymorphisms in the glucokinase gene in Czech diabetic and healthy control populations. Physiol. Res. 57(Suppl. 1), S99–S108 (2008).
    • 74. Beer NL, Osbak KK, van de Bunt M et al. Insights into the pathogenicity of rare missense GCK variants from the identification and functional characterization of compound heterozygous and double mutations inherited in cis. Diabetes Care 35(7), 1482–1484 (2012).
    • 75. Osbak KK, Colclough K, Saint-Martin C et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 30(11), 1512–1526 (2009).
    • 76. Khalil R, Al-Sheyab F, Khamaiseh E, Halaweh MA, Abder-Rahman HA. Screening of mutations in the GCK gene in Jordanian maturity-onset diabetes of the young type 2 (MODY2) patients. Genet. Mol. Res. 8(2), 500–506 (2009).
    • 77. Hassan SM, Iyer AP, Al-Abbasi FA. Screening for glucokinase (GCK) gene mutation in gestational diabetes women in western region of Saudi Arabia. Br. J. Med. Med. Res. 13(8), 1–10 (2016).
    • 78. Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antiox. Redox Sig. 11(5), 1059–1081 (2009).
    • 79. Rodrıguez-Manzaneque MT, Tamarit J, Bellı G, Ros J, Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 13(4), 1109–1121 (2002).
    • 80. Hoffmann B, Uzarska MA, Berndt C et al. The multidomain thioredoxin-monothiol glutaredoxins represent a distinct functional group. Antiox. Redox Sig. 15(1), 19–30 (2011).
    • 81. Gladyshev VN, Liu A, Novoselov SV et al. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J. Biol. Chem. 276(32), 30374–30380 (2001).
    • 82. Park JB, Levine M. Cloning, sequencing, and characterization of alternatively spliced glutaredoxin 1 cDNA and its genomic gene: chromosomal localization, mRNA stability, and origin of pseudogenes. J. Biol. Chem. 280(11), 10427–10434 (2005).
    • 83. Wu H, Lin L, Giblin F, Ho YS, Lou MF. Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. Free Rad. Biol. Med. 51(11), 2108–2117 (2011).
    • 84. Lillig CH, Berndt C, Vergnolle O et al. Characterization of human glutaredoxin 2 as iron–sulfur protein: a possible role as redox sensor. Proc. Natl Acad. Sci. USA 102(23), 8168–8173 (2005).
    • 85. Johansson C, Lillig CH, Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J. Biol. Chem. 279(9), 7537–7543 (2004).
    • 86. Čiuladaitė Ž, Burnytė B, Vansevičiūtė D, Dagytė E, Kučinskas V, Utkus A. Clinical, cytogenetic and molecular study of a case of ring chromosome 10. Mol. Cytogenet. 8(1), 1–6 (2015).
    • 87. Haunhorst P, Berndt C, Eitner S, Godoy JR, Lillig CH. Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron–sulfur protein. Biochem. Biophys. Res. Commun. 394(2), 372–376 (2010).
    • 88. Frey AG, Palenchar DJ, Wildemann JD, Philpott CC. A glutaredoxin·BolA complex serves as an iron–sulfur cluster chaperone for the cytosolic cluster assembly machinery. J. Biol. Chem. 291(43), 22344–22356 (2016).
    • 89. Fernandes AP, Fladvad M, Berndt C et al. A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J. Biol. Chem. 280(26), 24544–24552 (2005).
    • 90. Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, Winge DR. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281(26), 17661–17669 (2006).
    • 91. Ye H, Jeong SY, Ghosh MC et al. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J. Clin. Invest. 120(5), 1749–1761 (2010).
    • 92. Feng WX, Zhuo XW, Liu ZM et al. Case report: a variant non-ketotic hyperglycinemia with GLRX5 mutations: manifestation of deficiency of activities of the respiratory chain enzymes. Front. Genet. 12, 605778 (2021).
    • 93. Wingert RA, Galloway JL, Barut B et al. Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature 436(7053), 1035–1039 (2005).
    • 94. Tong WH, Rouault TA. Metabolic regulation of citrate and iron by aconitases: role of iron–sulfur cluster biogenesis. Biometals 20(3), 549–564 (2007).
    • 95. Fuss JO, Tsai CL, Ishida JP, Tainer JA. Emerging critical roles of Fe–S clusters in DNA replication and repair. Biochim. Biophys. Acta Mol. Cell Res. 1853(6), 1253–1271 (2015).
    • 96. McCarthy EL, Booker SJ. Destruction and reformation of an iron–sulfur cluster during catalysis by lipoyl synthase. Science 358(6361), 373–377 (2017).
    • 97. Ugulava NB, Gibney BR, Jarrett JT. Biotin synthase contains two distinct iron–sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron–sulfur cluster interconversions. Biochemistry 40(28), 8343–8351 (2001).
    • 98. Dern RJ, McCurdy PR, Yoshida A. A new structural variant of glucose-6-phosphate dehydrogenase with a high production rate (G6PD Hektoen). J. Lab. Clin. Med. 73(2), 283–290 (1969).
    • 99. Su J, Zheng N, Li Z et al. Association of GCK gene DNA methylation with the risk of clopidogrel resistance in acute coronary syndrome patients. J. Clin. Lab. Anal. 34(2), e23040 (2020).
    • 100. Hagihara K, Kazui M, Kurihara A, Ikeda T, Izumi T. Glutaredoxin is involved in the formation of the pharmacologically active metabolite of clopidogrel from its GSH conjugate. Drug Metab. Dispos. 40(9), 1854–1859 (2012).