We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Not just for tumor targeting: unmet medical needs and opportunities for nanomedicine

    Elise Lepeltier

    Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany

    Authors contributed equally

    Search for more papers by this author

    ,
    Lutz Nuhn

    Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium

    Authors contributed equally

    Search for more papers by this author

    ,
    Claus-Michael Lehr

    Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), 66123 Saarbrücken, Germany

    Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany

    &
    Rudolf Zentel

    **Author for correspondence:

    E-mail Address: zentel@uni-mainz.de

    Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10–14, Mainz, Germany

    Published Online:https://doi.org/10.2217/nnm.15.132

    During the last 3 decades, nanomedicines have provided novel opportunities to improve the delivery of chemotherapeutics in cancer therapy effectively. However, many principles learnt from there have the potential to be transferred to other diseases. This perspective article, on the one hand, critically reflects the limitations of nanomedicines in tumor therapy and, on the other hand, provides alternative examples of nanomedicinal applications in immunotherapy, noninvasive drug deliveries across epithelial barriers and strategies to combat intra- and extra-cellular bacterial infections. Looking ahead, access to highly complex nanoparticular delivery vehicles given nowadays may allow further improved therapeutic concepts against several diseases in the future too.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Duncan R. Polymer therapeutics: Top 10 selling pharmaceuticals – what next? J. Control. Release 190(0), 371–380 (2014).
    • 2 Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol. Pharm. 8(6), 2101–2141 (2011).
    • 3 Mochida Y, Cabral H, Miura Y et al. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano 8(7), 6724–6738 (2014).
    • 4 Nakamura H, Etrych T, Chytil P et al. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J. Control. Release 174, 81–87 (2014).
    • 5 Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer 99(3), 392–397 (2008).
    • 6 Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release 161(2), 175–187 (2012).
    • 7 Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
    • 8 Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nano 7(12), 779–786 (2012).
    • 9 Hucknall A, Rangarajan S, Chilkoti A. In pursuit of zero: Polymer brushes that resist the adsorption of proteins. Adv. Mater. 21(23), 2441–2446 (2009).
    • 10 Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18), 5605–5620 (2001).
    • 11 Wei Q, Becherer T, Angioletti-Uberti S et al. Protein interactions with polymer coatings and biomaterials. Angew. Chem. Int. Ed. Engl. 53(31), 8004–8031 (2014).
    • 12 Tenzer S, Docter D, Kuharev J et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772–781 (2013).
    • 13 Tenzer S, Docter D, Rosfa S et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9), 7155–7167 (2011).
    • 14 Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27(9), 2414–2425 (1994).
    • 15 Mohr K, Sommer M, Baier G et al. Aggregation behavior of polystyrene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J. Nanomed. Nanotechnol. 5(2), 1–10 (2014).
    • 16 Birke A, Huesmann D, Kelsch A et al. Polypeptoid-block-polypeptide copolymers: synthesis, characterization, and application of amphiphilic block copolypept(o)ides in drug formulations and miniemulsion techniques. Biomacromolecules 15(2), 548–557 (2014).
    • 17 Heller P, Birke A, Huesmann D et al. Introducing peptoplexes: polylysine-block-polysarcosine based polyplexes for transfection of hek 293T cells. Macromol. Biosci. 14(10), 1380–1395 (2014).
    • 18 Luxenhofer R, Fetsch C, Grossmann A. Polypeptoids: a perfect match for molecular definition and macromolecular engineering? J. Polymer Sci. A 51(13), 2731–2752 (2013).
    • 19 Luxenhofer R, Han Y, Schulz A et al. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 33(19), 1613–1631 (2012).
    • 20 Viegas TX, Bentley MD, Harris JM et al. Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 22(5), 976–986 (2011).
    • 21 Barz M, Luxenhofer R, Zentel R, Vicent MJ. Overcoming the peg-addiction: well-defined alternatives to peg, from structure-property relationships to better defined therapeutics. Polymer Chemistry 2(9), 1900–1918 (2011).
    • 22 Hemmelmann M, Mohr K, Fischer K, Zentel R, Schmidt M. Interaction of phpma-plma copolymers with human blood serum and its components. Mol. Pharm. 10(10), 3769–3775 (2013).
    • 23 Nuhn L, Gietzen S, Mohr K et al. Aggregation behavior of cationic nanohydrogel particles in human blood serum. Biomacromolecules 15(4), 1526–1533 (2014).
    • 24 Fang J, Nakamura H, Maeda H. The epr effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63(3), 136–151 (2011).
    • 25 Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine 9, 4357–4373 (2014).
    • 26 Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev. 61(13), 1203–1213 (2009).
    • 27 Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280(5361), 243–248 (1998).
    • 28 Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 112(1), 26–34 (2006).
    • 29 Reddy ST, Van Der Vlies AJ, Simeoni E et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotech. 25(10), 1159–1164 (2007).
    • 30 Toth I, Skwarczynski M. The immune system likes nanotechnology. Nanomedicine (Lond.) 9(17), 2607–2609 (2014). •• Foreword of a special focus issue in Nanomedicine (Lond.) with highlights, reviews and research articles about ‘nanotechnology for vaccine development’.
    • 31 Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano 9(1), 16–30 (2015).
    • 32 Nuhn L, Barz M, Zentel R. New perspectives of HPMA-based copolymers derived by post-polymerization modification. Macromol. Biosci. 14(5), 607–618 (2014).
    • 33 Nuhn L, Hartmann S, Palitzsch B et al. Water-soluble polymers coupled with glycopeptide antigens and T-cell epitopes as potential antitumor vaccines. Angew. Chem. Int. Ed. Engl. 52(40), 10652–10656 (2013). •• First article describing novel glycopeptide polymer conjugates as antitumor vaccines for the co-delivery of tumor-associated MUC1 glycopeptide antigens together with a T-helper-cell epitope.
    • 34 Glaffig M, Palitzsch B, Hartmann S et al. A fully synthetic glycopeptide antitumor vaccine based on multiple antigen presentation on a hyperbranched polymer. Chemistry 20(15), 4232–4236 (2014).
    • 35 Cai H, Chen MS, Sun ZY, Zhao YF, Kunz H, Li YM. Self-adjuvanting synthetic antitumor vaccines from muc1 glycopeptides conjugated to T-cell epitopes from tetanus toxoid. Angew. Chem. Int. Ed. Engl. 52(23), 6106–6110 (2013).
    • 36 Nuhn L. Enhancing gene knockdown efficiencies by comparing siRNA-loaded cationic nanogel particles of different sizes. RNA Dis. 2(1), e469 (2015).
    • 37 Nuhn L, Hirsch M, Krieg B et al. Cationic nanohydrogel particles as potential sirna carriers for cellular delivery. ACS Nano 6(3), 2198–2214 (2012).
    • 38 Nuhn L, Tomcin S, Miyata K et al. Size-dependent knockdown potential of siRNA-loaded cationic nanohydrogel particles. Biomacromolecules 15(11), 4111–4121 (2014).
    • 39 Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5(6), 471–484 (2006).
    • 40 Hartmann S, Nuhn L, Palitzsch B et al. CpG-loaded multifunctional cationic nanohydrogel particles as self-adjuvanting glycopeptide antitumor vaccines. Adv. Healthc. Mater. 4(4), 522–527 (2015). •• First article using glycopeptide nanogel conjugates as antitumor vaccines for co-delivery of tumor-associated MUC1 glycopeptide antigens together with immunostimulatory CpG.
    • 41 Astronomo RD, Burton DR. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Discov. 9(4), 308–324 (2010).
    • 42 Indications for Prevnar 13®. www.adult.prevnar13.com
    • 43 Bhatia S, Dimde M, Haag R. Multivalent glycoconjugates as vaccines and potential drug candidates. Med. Chem. Comm. 5(7), 862–878 (2014).
    • 44 Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10(9), 909–915 (2004).
    • 45 Joffre O, Nolte MA, Sporri R, Reis E Sousa C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227(1), 234–247 (2009).
    • 46 De Geest BG, Willart MA, Hammad H et al. Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. ACS Nano 6(3), 2136–2149 (2012).
    • 47 De Geest BG, Willart MA, Lambrecht BN et al. Surface-engineered polyelectrolyte multilayer capsules: synthetic vaccines mimicking microbial structure and function. Angew. Chem. Int. Ed. Engl. 51(16), 3862–3866 (2012).
    • 48 Den Haan JMM, Lehar SM, Bevan MJ. CD8(+) but not CD8() dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192(12), 1685–1696 (2000).
    • 49 Mintern JD, Percival C, Kamphuis MM, Chin WJ, Caruso F, Johnston AP. Targeting dendritic cells: the role of specific receptors in the internalization of polymer capsules. Adv. Healthc. Mater. 2(7), 940–944 (2013).
    • 50 Tappertzhofen K, Metz VV, Hubo M et al. Synthesis of maleimide-functionalyzed hpma-copolymers and in vitro characterization of the arage- and human immunoglobulin (huigg)–polymer conjugates. Macromol. Biosci. 13(2), 203–214 (2013).
    • 51 Tappertzhofen K, Bednarczyk M, Koynov K, Bros M, Grabbe S, Zentel R. Toward anticancer immunotherapeutics: well-defined polymer-antibody conjugates for selective dendritic cell targeting. Macromol. Biosci. 14(10), 1444–1457 (2014). •• Article showing selective uptake of multifunctional HPMA polymer systems into CD8+ dendritic cells via anti-DEC205 antibodies in the presence of phagocyting macrophages.
    • 52 Nuhn L. Addressing dendritic cells for anticancer immunity. J. Antibody Drug Conjug. doi:10.14229/jadc (2014).
    • 53 Buhler J, Gietzen S, Reuter A et al. Selective uptake of cylindrical poly(2-oxazoline) brush-antidec205 antibody-ova antigen conjugates into dec-positive dendritic cells and subsequent T-cell activation. Chemistry 20(39), 12405–12410 (2014). •• Introduction of inert poly(2-oxaziline) brushes as vectors for targeted antigen delivery into CD8+ dendritic cells for cytotoxic T-cell responses via anti-DEC205 antibodies.
    • 54 Serra P, Santamaria P. Nanoparticle-based autoimmune disease therapy. Clin. Immunol. doi:10.1016/j.clim.2015.02.003 (2015) (Epub ahead of print).
    • 55 Maldonado RA, Lamothe RA, Ferrari JD et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112(2), E156–E165 (2015).
    • 56 Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 109(28), 11270–11275 (2012).
    • 57 Becker J, Andersen M, Schrama D, Thor Straten P. Immune-suppressive properties of the tumor microenvironment. Cancer Immunol. Immunother. 62(7), 1137–1148 (2013).
    • 58 Domling A, Holak TA. Programmed death-1: therapeutic success after more than 100 years of cancer immunotherapy. Angew. Chem. Int. Ed. Engl. 53(9), 2286–2288 (2014).
    • 59 Tanaka H, Tanaka J, Kjaergaard J, Shu S. Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J. Immunother. 25(3), 207–217 (2002).
    • 60 Bopp T, Radsak M, Schmitt E, Schild H. New strategies for the manipulation of adaptive immune responses. Cancer Immunol. Immunother. 59(9), 1443–1448 (2010).
    • 61 Ulges A, Klein M, Reuter S et al. Protein kinase CK2 enables regulatory T cells to suppress excessive Th2 responses in vivo. Nat. Immunol. 16(3), 267–275 (2015).
    • 62 Martin F, Ladoire S, Mignot G, Apetoh L, Ghiringhelli F. Human FOXP3 and cancer. Oncogene 29(29), 4121–4129 (2010).
    • 63 Sun L, Wu J, Yi S. FOXP3 is critical for human natural CD4+CD25+ regulatory T cells to suppress alloimmune response. Transpl. Immunol. 26(2–3), 71–80 (2012).
    • 64 Ali H, Weigmann B, Neurath MF, Collnot EM, Windbergs M, Lehr CM. Budesonide loaded nanoparticles with ph-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J. Control. Release 183, 167–177 (2014).
    • 65 Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Release 161(2), 235–246 (2012).
    • 66 Schmidt C, Lautenschlaeger C, Collnot EM et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. J. Control. Release 165(2), 139–145 (2013).
    • 67 Lademann J, Richter H, Teichmann A et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 66(2), 159–164 (2007).
    • 68 Bal SM, Ding Z, Van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: Do all ways lead to rome? J. Control. Release 148(3), 266–282 (2010).
    • 69 Mittal A, Raber AS, Schaefer UF et al. Non-invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization. Vaccine 31(34), 3442–3451 (2013).
    • 70 Mittal A, Schulze K, Ebensen T et al. Inverse micellar sugar glass (imsg) nanoparticles for transfollicular vaccination. J. Control. Release 206, 140–152 (2015).
    • 71 Mittal A, Schulze K, Ebensen T et al. Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation. Nanomedicine 11(1), 147–154 (2015). •• Important and innovative publication showing the potential of transfollicular vaccination.
    • 72 Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp. 113(7), 823–839 (2005).
    • 73 Hittinger M, Juntke J, Kletting S, Schneider-Daum N, De Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv. Drug Deliv. Rev. 85, 44–56 (2014).
    • 74 Ruge CA, Schaefer UF, Herrmann J et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS ONE 7(7), e40775 (2012).
    • 75 Schaefer J, Schulze C, Marxer EEJ et al. Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions. ACS Nano 6(6), 4603–4614 (2012).
    • 76 Schleh C, Kreyling WG, Lehr CM. Pulmonary surfactant is indispensable in order to simulate the in vivo situation. Part. Fibre Toxicol. 10, 6 (2013).
    • 77 De Souza Carvalho C, Daum N, Lehr C-M. Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv. Drug Deliv. Rev. 75(0), 129–140 (2014). •• Important review describing notably advanced in vitro model to study the lung delivery of particles.
    • 78 Lu C, Maurer CK, Kirsch B, Steinbach A, Hartmann RW. Overcoming the unexpected functional inversion of a PQSR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing. Angew. Chem. Int. Ed. Engl. 53(4), 1109–1112 (2014). •• Important and recent paper showing the discovery of the first antivirulence compound that is potent in vivo and targets the virulence regulator PqsR of Pseudomonas aeruginosa: proof of concept for this novel antivirulence therapy.
    • 79 Nafee N, Husari A, Maurer CK et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J. Control. Release 192, 131–140 (2014). • Interesting paper describing solid lipid nanoparticles active against P. aeruginosa biofilm.
    • 80 Mahiny AJ, Dewerth A, Mays LE et al. In vivo genome editing using nuclease-encoding mrna corrects sp-b deficiency. Nat. Biotech. 33(6), 584–586 (2015).
    • 81 Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents 43(6), 485–496 (2014). •• One of the first general reviews showing the potential of nanoparticles to treat intracellular infections.
    • 82 Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harbor Perspect. Biol. 2(5), a000414 (2010).
    • 83 Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 190, 607–623 (2014). •• Important review describing lipid and polymer nanoparticles for overcoming in vitro biofilm resistance: there is a need for more in vivo studies in this field.
    • 84 Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66(17), 2873–2896 (2009). • Complete and comprehensive review describing the different nanoparticle uptake mechanisms and the factors that can have an influence.
    • 85 Hao N, Li L, Zhang Q et al. The shape effect of pegylated mesoporous silica nanoparticles on cellular uptake pathway in hela cells. Microporous Mesoporous Mater. 162(0), 14–23 (2012).
    • 86 Lepeltier E, Bourgaux C, Maksimenko A et al. Self-assembly of polyisoprenoyl gemcitabine conjugates: influence of supramolecular organization on their biological activity. Langmuir 30(22), 6348–6357 (2014). •• Recent study showing the link between the supramolecular structure of a nanoparticle and its cell internalization and the complexity to predict the uptake mechanism that can be different for the same particle according to the cell line studied.
    • 87 Zandi R, Reguera D, Bruinsma RF, Gelbart WM, Rudnick J. Origin of icosahedral symmetry in viruses. Proc. Natl Acad. Sci. USA 101(44), 15556–15560 (2004). • Important study where, by computer modeling, the importance of the icosahedral virus shape is discussed.
    • 88 Koren E, Apte A, Jani A, Torchilin VP. Multifunctional pegylated 2c5-immunoliposomes containing ph-sensitive bonds and tat peptide for enhanced tumor cell internalization and cytotoxicity. J. Control. Release 160(2), 264–273 (2012).
    • 89 Qian Z, Larochelle JR, Jiang B et al. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry 53(24), 4034–4046 (2014).
    • 90 Baio JE, Schach D, Fuchs AV et al. Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces. Chem. Commun. (Camb.) 51(2), 273–275 (2015).
    • 91 Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156(2), 128–145 (2011). • Comprehensive review about antimicrobial nanoparticles and antibiotic delivery systems as new tools to tackle the current challenges in treating infectious diseases.
    • 92 Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int. J. Nanomedicine 7, 1805–1818 (2012).
    • 93 Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6(5), 4279–4287 (2012). •• Very interesting publication showing an ingenious surface of nanoparticle charge switching, in order to shield nontarget interactions at pH 7.4 but bind avidly to bacteria in acidic area.
    • 94 Costanza F, Padhee S, Wu H et al. Investigation of antimicrobial peg-poly(amino acid)s. RSC Adv. 4(4), 2089–2095 (2014).
    • 95 Kim PS, Ahmed R. Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol. 22(2), 223–230 (2010).
    • 96 Irvine AS, Trinder PK, Laughton DL et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat. Biotechnol. 18(12), 1273–1278 (2000).