We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Polymersomes and their applications in cancer delivery and therapy

    Lijuan Guan

    Department of Chemistry, University College London, London, WC1H 0AJ, UK

    MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK

    ,
    Loris Rizzello

    Department of Chemistry, University College London, London, WC1H 0AJ, UK

    MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK

    &
    Giuseppe Battaglia

    *Author for correspondence:

    E-mail Address: g.battaglia@ucl.ac.uk

    Department of Chemistry, University College London, London, WC1H 0AJ, UK

    MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK

    Published Online:https://doi.org/10.2217/nnm.15.110

    Polymersomes have been proposed as a platform for drug delivery systems since late 90s. They are exploited to deliver hydrophilic and/or hydrophobic therapeutic and diagnostic agents. The relatively robust membrane, the colloidal stability, along with a significant biocompatibility and easy ligands conjugation methods make polymersomes primary candidates for therapeutic drugs delivery in cancer clinical treatments. In addition, they represent an optimal choice as imaging tools in noninvasive diagnostic. As a result, polymersomes have been proposed and widely studied for anticancer treatments. However, there are not sufficient clinic translation data of human studies yet. In this critical review, we will discuss such topics, focusing on the self-assembly of membrane-forming copolymers, on their tunable physicochemical properties and on the consequential applications of these biocompatible polymersomes in drug delivery and cancer therapy.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Stewart BW, Wild CP. World Cancer Report 2014. IARC Nonserial Publication, Switzerland (2014).
    • 2 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 63(1), 11–30 (2013).
    • 3 Yamauchi T, Yoshida A, Ueda T. Camptothecin induces DNA strand breaks and is cytotoxic in stimulated normal lymphocytes. Oncol. Rep. 25(2), 347–352 (2011).
    • 4 Fujita-Yamaguchi Y. Renewed interest in basic and applied research involving monoclonal antibodies against an oncofetal Tn-antigen. J. Biochem. 154(2), 103–105 (2013).
    • 5 Chandramohan V, Mitchell DA, Johnson LA, Sampson JH, Bigner DD. Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncol. 9(7), 977–990 (2013).
    • 6 Kapur R, Einarsdottir HK, Vidarsson G. IgG-effector functions: “The Good, The Bad and The Ugly”. Immunol. Lett. 162(2), 139–144 (2013).
    • 7 Fakhrejahani E, Toi M. Antiangiogenesis therapy for breast cancer: an update and perspectives from clinical trials. Jpn. J. Clin. Oncol. 44(3), 197–207 (2014).
    • 8 Li X, Kimberly RP. Targeting the Fc receptor in autoimmune disease. Expert Opin. Ther. Targets 18(3), 335–350 (2014).
    • 9 Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
    • 10 Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release 164(2), 138–144 (2012).
    • 11 Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63(3), 136–151 (2011).
    • 12 Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65(1), 71–79 (2013).•• A historical review of enhanced permeability and retention effect, on its features and consequential benefits in tumor-selective delivery of nanoparticles.
    • 13 Maeda H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc. Japan Acad. B 88(3), 53–71 (2012).
    • 14 Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6(9), 688–701 (2006).
    • 15 Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol. 624, 25–37 (2010).
    • 16 Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5), 347–360 (2003).
    • 17 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007).
    • 18 Dombu CY, Betbeder D. Airway delivery of peptides and proteins using nanoparticles. Biomaterials 34(2), 516–525 (2013).
    • 19 Pichon C, Billiet L, Midoux P. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr. Opin. Biotechnol. 21(5), 640–645 (2010).
    • 20 Liboiron BD, Mayer LD. Nanoscale particulate systems for multidrug delivery: towards improved combination chemotherapy. Ther. Deliv. 5(2), 149–171 (2014).
    • 21 Svenson S. What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6(2), 125–135 (2014).
    • 22 Angelico R, Ceglie A, Sacco P, Colafemmina G, Ripoli M, Mangia A. Phyto-liposomes as nanoshuttles for water-insoluble silybin–phospholipid complex. Int. J. Pharm. 471(1–2), 173–181 (2014).
    • 23 Schroeder A, Turjeman K, Schroeder JE, Leibergall M, Barenholz Y. Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert Opin. Drug Deliv. 7(10), 1175–1189 (2010).
    • 24 El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur. J. Pharm. Sci. 34(4–5), 203–222 (2008).
    • 25 Ruttala H, Ko Y. Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharm. Res. 32(3), 1002–1016 (2014).
    • 26 Lee S, Koo H, Na JH et al. DNA amplification in neutral liposomes for safe and efficient gene delivery. ACS Nano 8(5), 4257–4267 (2014).
    • 27 Goren D, Horowitz AT, Zalipsky S, Woodle MC, Yarden Y, Gabizon A. Targeting of stealth liposomes to ERBB-2 (HER/2) receptor: in vitro and in vivo studies. Br. J. Cancer 74(11), 1749–1756 (1996).
    • 28 Marqués-Gallego P, De Kroon AIPM. Ligation strategies for targeting liposomal nanocarriers. BioMed Res. Int. 2014, 12 (2014).
    • 29 Brown S, Khan DR. The treatment of breast cancer using liposome technology. J. Drug Deliv. 2012, 6 (2012).
    • 30 Du J, Tang Y, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 127(51), 17982–17983 (2005).
    • 31 Smart TP, Mykhaylyk OO, Ryan AJ, Battaglia G. Polymersomes hydrophilic brush scaling relations. Abstr. Pap. Am. Chem. S 5, 3607–3610 (2009).
    • 32 Holowka EP, Pochan DJ, Deming TJ. Charged polypeptide vesicles with controllable diameter. J. Am. Chem. Soc. 127(35), 12423–12428 (2005).
    • 33 Koide A, Kishimura A, Osada K, Jang W-D, Yamasaki Y, Kataoka K. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J. Am. Chem. Soc. 128(18), 5988–5989 (2006).
    • 34 Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44(10), 1094–1104 (2011).
    • 35 Elnaggar YSR, El-Refaie WM, El-Massik MA, Abdallah OY. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J. Control. Release 180, 10–24 (2014).
    • 36 Levine DH, Ghoroghchian PP, Freudenberg J et al. Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods 46(1), 25–32 (2008).
    • 37 Discher DE, Eisenberg A. Polymer vesicles. Science 297(5583), 967–973 (2002).
    • 38 Discher DE, Ahmed F. Polymersomes. Annu. Rev. Biomed. Eng. 8, 323–341 (2006).
    • 39 Discher BM. Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417), 1143–1146 (1999).•• The first ever report on polymersomes directing the development of synthetic thin-shelled capsules based on block copolymers.
    • 40 Peer D. Harnessing RNAi nanomedicine for precision therapy. Mol. Cell. Ther. 2(5), doi:10.1186/2052-8426-2-5 (2014) (Epub ahead of print).
    • 41 Israelachvili JN. Intermolecular and Surface Forces (3rd Edition). Academic Press, MA, USA (2011).
    • 42 Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G. Block copolymer nanostructures. Nano Today 3(3–4), 38–46 (2008).
    • 43 Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm. 71(3), 463–474 (2009).
    • 44 Kim S-H, Shum HC, Kim JW, Cho J-C, Weitz DA. Multiple polymersomes for programmed release of multiple components. J. Am. Chem. Soc. 133(38), 15165–15171 (2011).
    • 45 Marguet M, Edembe L, Lecommandoux S. Polymersomes in polymersomes: multiple loading and permeability control. Angew. Chem. Int. Ed. Engl. 51(5), 1173–1176 (2012).
    • 46 Battaglia G, Tomas S, Ryan AJ. Lamellarsomes: metastable polymeric multilamellar aggregates. Abstr. Pap. Am. Chem. S 3(4), 470–475 (2007).
    • 47 Battaglia G, Ryan AJ. Bilayers and interdigitation in block copolymer vesicles. J. Am. Chem. Soc. 127(24), 8757–8764 (2005).
    • 48 Kim KT, Zhu J, Meeuwissen SA et al. Polymersome stomatocytes: controlled shape transformation in polymer vesicles. J. Am. Chem. Soc. 132(36), 12522–12524 (2010).
    • 49 Massignani M, Lopresti C, Blanazs A et al. Controlling cellular uptake by surface chemistry, size, and surface topology at the nanoscale. Small 5(21), 2424–2432 (2009).
    • 50 Sumeet J, Frank S B. On the origins of morphological complexity in block copolymer surfactants. Science 300(5618), 460–464 (2003).
    • 51 Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J. Control. Release 90(3), 323–334 (2003).•• Describes a twofold increase in in vivo circulation time of PEGylated polymersomes compared with PEGylated liposomes.
    • 52 Du J, Armes SP. pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer. J. Am. Chem. Soc. 127(37), 12800–12801 (2005).
    • 53 Bi H, Yang B, Wang L, Cao W, Han X. Electroformation of giant unilamellar vesicles using interdigitated ITO electrodes. J. Mater. Chem. A 1(24), 7125–7130 (2013).
    • 54 Mabrouk E, Cuvelier D, Pontani L-L et al. Formation and material properties of giant liquid crystal polymersomes. Abstr. Pap. Am. Chem. S 5(9), 1870–1878 (2009).
    • 55 Howse JR, Jones RaL, Battaglia G, Ducker RE, Leggett GJ, Ryan AJ. Templated formation of giant polymer vesicles with controlled size distributions. Nat. Mater. 8(6), 507–511 (2009).
    • 56 Abbaspourrad A, Duncanson WJ, Lebedeva N et al. Microfluidic fabrication of stable gas-filled microcapsules for acoustic contrast enhancement. Langmuir 29(40), 12352–12357 (2013).
    • 57 Liu D, Herranz-Blanco B, Mäkilä E et al. Microfluidic templated mesoporous silicon–solid lipid microcomposites for sustained drug delivery. ACS Appl. Mater. Interfaces 5(22), 12127–12134 (2013).
    • 58 Thiele J, Abate AR, Shum HC, Bachtler S, Förster S, Weitz DA. Fabrication of polymersomes using double-emulsion templates in glass-coated stamped microfluidic devices. Small 6(16), 1723–1727 (2010).
    • 59 Arriaga LR, Datta SS, Kim S-H et al. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small 10(5), 950–956 (2013).
    • 60 Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. Monodisperse double emulsions generated from a microcapillary device. Science 308(5721), 537–541 (2005).
    • 61 Marguet M, Bonduelle C, Lecommandoux S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem. Soc. Rev. 42(2), 512–529 (2013).• A review that introduced another possiblity of polymersome-based nanoparticles in biomedical applications.
    • 62 Lee JC, Bermudez H, Discher BM et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol. Bioeng. 73(2), 135–145 (2001).
    • 63 Battaglia G, Ryan AJ. Pathways of polymeric vesicle formation. J. Phys. Chem. 110(21), 10272–10279 (2006).•• Describes the conformation changes along with the energy changes from bulk film to final vesicles upon the hydration.
    • 64 Lopresti C, Massignani M, Fernyhough C et al. Controlling polymersome surface topology at the nanoscale by membrane confined polymerpolymer phase separation. ACS Nano 5(3), 1775–1784 (2011).
    • 65 Pearson RT, Warren NJ, Lewis AL, Armes SP, Battaglia G. Effect of pH and temperature on PMPC–PDPA copolymer self-assembly. Macromolecules 46(4), 1400–1407 (2013).
    • 66 Robertson JD, Yealland G, Avila-Olias M et al. pH-sensitive tubular polymersomes: formation and applications in cellular delivery. ACS Nano 8(5), 4650–4661 (2014).
    • 67 Grumelard J, Taubert A, Meier W. Soft nanotubes from amphiphilic ABA triblock macromonomers. Chem. Commun. (13), 1462–1463 (2004).
    • 68 Van Oers MCM, Rutjes FPJT, Van Hest JCM. Tubular polymersomes: a cross-linker-induced shape transformation. J. Am. Chem. Soc. 135(44), 16308–16311 (2013).
    • 69 Haluska C, Góźdź W, Döbereiner H-G, Förster S, Gompper G. Giant hexagonal superstructures in diblock-copolymer membranes. Phys. Rev. Lett. 89(23), 238302 (2002).
    • 70 Christian DA, Ellenbroek WG, Tian A et al. Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nat. Mater. 8(10), 843–849 (2009).
    • 71 Meeuwissen SA, Bruekers SMC, Chen Y, Pochan DJ, Van Hest JCM. Spontaneous shape changes in polymersomes via polymer/polymer segregation. Polymer Chemistry 5(2), 489–501 (2014).
    • 72 Baumgart T, Hess ST, Webb WW. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425(6960), 821–824 (2003).
    • 73 Wang L, Chierico L, Little D et al. Encapsulation of biomacromolecules within polymersomes by electroporation. Angew. Chem. Int. Ed. Engl. 51(44), 11122–11125 (2012).
    • 74 Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J. Control. Release 161(2), 473–483 (2012).
    • 75 Jiang W, Zhou Y, Yan D. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem. Soc. Rev. 44, 3874–3889 (2015).
    • 76 Lomas H, Du J, Canton I et al. Efficient encapsulation of plasmid DNA in pH-sensitive PMPC-PDPA polymersomes: study of the effect of PDPA block length on copolymer-DNA binding affinity. Macromol. Biosci. 10(5), 513–530 (2010).
    • 77 Borchert U, Lipprandt U, Bilang M et al. pH-induced release from P2VP-PEO block copolymer vesicles. Langmuir 22(13), 5843–5847 (2006).
    • 78 Fernyhough C, Ryan AJ, Battaglia G. pH controlled assembly of a polybutadiene-poly(methacrylic acid) copolymer in water: packing considerations and kinetic limitations. Abstr. Pap. Am. Chem. S 5(8), 1674–1682 (2009).
    • 79 Checot F, Lecommandoux S, Klok HA, Gnanou Y. From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers. Eur. Phys. J. 10(1), 25–35 (2003).
    • 80 Christian NA, Milone MC, Ranka SS et al. Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug. Chem. 18(1), 31–40 (2006).
    • 81 Gaitzsch J, Appelhans D, Wang L, Giuseppe B, Voit B. Synthetic bionanoreactor mechanical and chemical control of polymersome membrane permeability. Angew. Chem. Int. Ed. Engl. 51(18), 4448–2251 (2012).
    • 82 Yu S, Azzam T, Rouiller I, Eisenberg A. “Breathing” vesicles. J. Am. Chem. Soc. 131(30), 10557–10566 (2009).
    • 83 Chen W, Du J. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci. Rep. 3, 2162 (2013).
    • 84 Massignani M, Canton I, Sun T et al. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. PLoS ONE 5(5), e10459 (2010).
    • 85 Du J, O'reilly RK. Advances and challenges in smart and functional polymer vesicles. Abstr. Pap. Am. Chem. S 5(19), 3544 (2009).
    • 86 Xia Y, Yin X, Burke NaD, Stöver HDH. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 38(14), 5937–5943 (2005).
    • 87 Xia Y, Burke NaD, Stöver HDH. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39(6), 2275–2283 (2006).
    • 88 Qin S, Geng Y, Discher DE, Yang S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block- poly(N-isopropylacrylamide). Adv. Mater. 18(21), 2905–2909 (2006).
    • 89 Li Y, Lokitz BS, Mccormick CL. Thermally responsive vesicles and their structural “locking” through polyelectrolyte complex formation. Angew. Chem. Int. Ed. Engl. 118(35), 5924–5927 (2006).
    • 90 Pasparakis G, Alexander C. Sweet talking double hydrophilic block copolymer vesicles. Angew. Chem. Int. Ed. Engl. 47(26), 4847–4850 (2008).
    • 91 Weaver JVM, Armes SP, Butun V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer. Chem. Commun. (18), 2122–2123 (2002).
    • 92 Weaver J, Bannister I, Robinson K et al. Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate. Macromolecules 37(7), 2395–2403 (2004).
    • 93 Zou YQ, Brooks DE, Kizhakkedathu JN. A novel functional polymer with tunable LCST. Macromolecules 41(14), 5393–5405 (2008).
    • 94 Meng F, Engbers GHM, Feijen J. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J. Control. Release 101(1–3), 187–198 (2005).
    • 95 Meng F, Hiemstra C, Engbers GHM, Feijen J. Biodegradable polymersomes. Macromolecules 36, 3004–3006 (2003).
    • 96 Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10(2), 197–209 (2009).
    • 97 Li M-H, Keller P. Stimuli-responsive polymer vesicles. Abstr. Pap. Am. Chem. S 5(5), 927 (2009).
    • 98 Jain JP, Kumar N. Self assembly of amphiphilic (PEG)3-PLA copolymer as polymersomes- preparation, characterization, and their evaluation as drug carrier. Biomacromolecules 11, 9 (2010).
    • 99 Jain JP, Kumar N. Development of amphotericin B loaded polymersomes based on (PEG)(3)-PLA co-polymers: factors affecting size and in vitro evaluation. Eur. J. Pharm. Sci. 40(5), 456–465 (2010).
    • 100 Ayen WY, Garkhal K, Kumar N. Doxorubicin-loaded (PEG)(3)-PLA nanopolymersomes: effect of solvents and process parameters on formulation development and in vitro study. Mol. Pharm. 8(2), 466–478 (2011).
    • 101 Ghoroghchian PP, Li G, Levine DH et al. Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)-block-polycaprolactone. Macromolecules 39(5), 1673–1675 (2006).
    • 102 Ahmed F, Discher DE. Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. J. Control. Release 96(1), 37–53 (2004).
    • 103 Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control. Release 116(2), 150–158 (2006).
    • 104 Chen W, Meng F, Cheng R, Zhong Z. pH-sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J. Control. Release 142(1), 40–46 (2010).
    • 105 Kim J-K, Garripelli VK, Jeong U-H, Park J-S, Repka MA, Jo S. Novel pH-sensitive polyacetal-based block copolymers for controlled drug delivery. Int. J. Pharm. 401(1–2), 79–86 (2010).
    • 106 Napoli A, Valentini M, Tirelli N, Muller M, Hubbell JA. Oxidation-responsive polymeric vesicles. Nat. Mater. 3(3), 183–189 (2004).
    • 107 Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 8(6), 1966–1972 (2007).
    • 108 Cabane E, Malinova V, Menon S, Palivan CG, Meier W. Photoresponsive polymersomes as smart, triggerable nanocarriers. Abstr. Pap. Am. Chem. S 7(19), 9167 (2011).
    • 109 Mabrouk E, Cuvelier D, Brochard-Wyart F, Nassoy P, Li M-H. Bursting of sensitive polymersomes induced by curling. Proc. Natl Acad. Sci. USA 106(18), 7294–7298 (2009).
    • 110 Tong X, Wang G, Soldera A, Zhao U. How can azobenzene block copolymer vesicles be dissociated and reformed by light. J. Phys. Chem. B 109(43), 20281–20287 (2005).
    • 111 Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37(24), 8911–8917 (2004).
    • 112 Cambre JN, Sumerlin BS. Biomedical applications of boronic acid polymers. Polymer 52(21), 4631–4643 (2011).
    • 113 Cheng F, Jäkle F. Boron-containing polymers as versatile building blocks for functional nanostrctured materials. Polymer Chemistrty 2(10), 2122–2132 (2011).
    • 114 Kim H, Kang YJ, Kang S, Kim KT. Monosaccharide-responsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH. J. Am. Chem. Soc. 134(9), 4030–4033 (2012).
    • 115 Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J. Control. Release 161(2), 429–445 (2012).•• A very recent review navigating the stealthiness of nanoparticles, conferred by their physicochemical properties and their advantages in cancer therapy.
    • 116 Mosqueira VCF, Legrand P, Gulik A et al. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22(22), 2967–2979 (2001).
    • 117 Oltra NS, Nair P, Discher DE. From stealthy polymersomes and filomicelles to “self” peptide-nanoparticles for cancer therapy. Annu. Rev. Chem. Biomol. Eng. 5, 281–299 (2014).
    • 118 Diciccio JE, Steinberg BE. Lysosomal pH and ana­lysis of the counter ion pathways that support acidification. J. Gen. Physiol. 137(4), 385–390 (2011).
    • 119 Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55, 663–700 (1986).•• Presents how the size, shape and surface chemistry of nanoparticles control their cell entry via endocytosis, as well as how to escape the lysosomal degradation to achieve effective payload release.
    • 120 Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10(9), 623–635 (2009).
    • 121 Canton I, Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 41(7), 2718 (2012).
    • 122 Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377(Pt 1), 159–169 (2004).
    • 123 Pourtau L, Oliveira H, Thevenot J et al. Antibody-functionalized magnetic polymersomes: In vivo targeting and imaging of bone metastases using high resolution MRI. Adv. Healthc. Mater. 2(11), 1420–1424 (2013).
    • 124 Shcherbakova DM, Verkhusha VV. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10(8), 751–754 (2013).
    • 125 Filonov GS, Piatkevich KD, Ting L-M, Zhang J, Kim K, Verkhusha VV. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29(8), 757–761 (2011).
    • 126 Frangioni JV. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
    • 127 Chance B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenationa. Ann. NY Acad. Sci. 838(1), 29–45 (1998).
    • 128 Ghoroghchian PP, Frail PR, Susumu K et al. Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc. Natl Acad. Sci. USA 102(8), 2922–2927 (2005).
    • 129 Lin VS, DiMagno SG, Therien MJ. Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems. Science 264(5162), 7 (1994).
    • 130 Susumu K, Therien MJ. Decoupling optical and potentiometric band gaps in π-conjugated materials. J. Am. Chem. Soc. 124(29), 8550–8552 (2002).
    • 131 Rubtsov IV, Susumu K, Rubtsov GI, Therien MJ. Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes. J. Am. Chem. Soc. 125(9), 2687–2696 (2003).
    • 132 Bleul R, Thiermann R, Marten GU et al. Continuously manufactured magnetic polymersomes – a versatile tool (not only) for targeted cancer therapy. Nanoscale 5(23), 11385 (2013).
    • 133 Sanson C, Diou O, Thévenot J et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2), 1122–1140 (2011).
    • 134 Cheng Z, Tsourkas A. Paramagnetic porous polymersomes. Langmuir 24(15), 8169–8173 (2008).
    • 135 Chiang W-H, Huang W-C, Chang C-W et al. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J. Control. Release 168(3), 280–288 (2013).
    • 136 Qi W, Ghoroghchian PP, Li G, Hammer DA, Therien MJ. Aqueous self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles. Nanoscale 5(22), 10908–10915 (2013).
    • 137 Hu C-MJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1(2), 323–334 (2010).
    • 138 Baumann BC, Kao GD, Mahmud A et al. Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 4(1), 64–79 (2012).
    • 139 Mohan P, Rapoport N. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol. Pharm. 7(6), 1959–1973 (2010).
    • 140 Gustafson DL, Merz AL, Long ME. Pharmacokinetics of combined doxorubicin and paclitaxel in mice. Cancer Lett. 220(2), 161–169 (2005).
    • 141 Briasoulis E, Karavasilis V, Tzamakou E et al. Interaction pharmacokinetics of PEGylated liposomal doxorubicin (Caelyx) on coadministration with paclitaxel or docetaxel. Cancer Chemother. Pharmacol. 53(5), 452–457 (2004).
    • 142 Kim H-O, Kim E, An Y et al. A biodegradable polymersome containing Bcl-xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromol. Biosci. 13(6), 745–754 (2013).
    • 143 Doherty JK, Bond C, Jardim A, Adelman JP, Clinton GM. The HER-2/neu receptor tyrosine kinase gene encodes a secreted autoinhibitor. Proc. Natl Acad. Sci. USA 96(19), 10869–10874 (1999).
    • 144 Sugahara KN, Teesalu T, Karmali PP et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981), 1031–1035 (2010).
    • 145 Pang Z, Gao H, Yu Y et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug. Chem. 22(6), 1171–1180 (2011).
    • 146 Petersen MA, Hillmyer MA, Kokkoli E. Bioresorbable polymersomes for targeted delivery of cisplatin. Bioconjug. Chem. 24(4), 533–543 (2013).
    • 147 Lomas H, Johnston AP, Such GK et al. Polymersome-loaded capsules for controlled release of DNA. Small 7(14), 2109–2119 (2011).
    • 148 Pangburn TO, Georgiou K, Bates FS, Kokkoli E. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. Langmuir 28(35), 12816–12830 (2012).
    • 149 Kim Y, Tewari M, Pajerowski JD et al. Polymersome delivery of siRNA and antisense oligonucleotides. J. Control. Release 134(2), 132–140 (2009).
    • 150 Zhang J, Wu L, Meng F et al. pH and reduction dual-bioresponsive polymersomes for efficient intracellular protein delivery. Langmuir 28(4), 2056–2065 (2012).
    • 151 Pang Z, Feng L, Hua R et al. Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol. Pharm. 7(6), 1995–2005 (2010).• Describes an excellent example of how to evaluate the in vivo safety of polymersomes.
    • 152 Murdoch C, Reeves KJ, Hearnden V et al. Internalization and biodistribution of polymersomes into oral squamous cell carcinoma cells in vitro and in vivo. Nanomedicine 5(7), 12 (2010).
    • 153 Liu G, Ma S, Li S et al. The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials 31(29), 7575–7585 (2010).
    • 154 Discher DE, Ortiz V, Srinivas G et al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog. Polym. Sci. 32(8–9), 838–857 (2007).
    • 155 Liu LF, Desai SD, Li T-K, Mao Y, Sun MEI, Sim S-P. Mechanism of action of camptothecin. Ann. NY Acad. Sci. 922(1), 1–10 (2000).
    • 156 Bleul R, Thiermann R, K S, Häfeli UO, Maskos M. Multifunctional nanocarriers for biomedical applications. Proc. SPIE 8595, 85951N (2013).
    • 157 Van De Wiele C, Phonteyne P, Pauwels P et al. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J. Nucl. Med. 49(2), 260–264 (2008).
    • 158 Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res. 59(5), 1152–1159 (1999).
    • 159 Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 175(4025), 949–955 (1972).
    • 160 Miller AD. Human gene therapy comes of age. Nature 357(6378), 455–460 (1992).
    • 161 Nielsen C. Human gene therapy. Nature 392(6679), 6 (1998).
    • 162 Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther. 1(5), 347–355 (2002).
    • 163 Hannon GJ. RNA interference. Nature 418(6894), 244–251 (2002).
    • 164 Hart SL. Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biol. Toxicol. 26(1), 69–81 (2010).
    • 165 Luo D, Saltzman WM. Synthetic DNA delivery systems. Nature 18(1), 33–37 (2000).
    • 166 Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6(4), 299–310 (2005).
    • 167 Pathak A, Patnaik S, Gupta KC. Recent trends in non-viral vector-mediated gene delivery. Biotechnol. J. 4(11), 1559–1572 (2009).
    • 168 Huang Z, Teng W, Liu L, Wang L, Wang Q, Dong Y. Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable, amphiphilic, and amphoteric copolymer. Nanotechnology 24(26), 265104 (2013).
    • 169 Brown MD, Gray AI, Tetley L et al. In vitro and in vivo gene transfer with poly(amino acid) vesicles. J. Control. Release 93(2), 193–211 (2003).
    • 170 Brown MD, Schätzlein A, Brownlie A et al. Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug. Chem. 11(6), 880–891 (2000).
    • 171 Lomas H, Massignani M, Abdullah KA et al. Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. 139, 143 (2008).
    • 172 Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH. Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther. 11(5), 8 (2004).
    • 173 Egli S, Schlaad H, Bruns N, Meier W. Functionalization of block copolymer vesicle surfaces. Polymers 3(4), 252–280 (2011).
    • 174 Yang X, Grailer JJ, Rowland IJ et al. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano 4(11), 6805–6817 (2010).
    • 175 Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54(5), 675–693 (2002).
    • 176 Wang S, Lee RJ, Cauchon G, Gorenstein DG, Low PS. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth-factor receptor into cultured Kb cells with liposomes conjugated to folate via polyethylene-glycol. Proc. Natl Acad. Sci. USA 92(8), 3318–3322 (1995).
    • 177 Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).
    • 178 Kokkoli E, Mardilovich A, Wedekind A, Rexeisen EL, Garg A, Craig JA. Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles. Abstr. Pap. Am. Chem. S 2(12), 1015–1024 (2006).
    • 179 Ellis LM. A targeted approach for antiangiogenic therapy of metastatic human colon cancer. Am. J. Surg. 69(1), 3–10 (2003).
    • 180 Jayne DG, Heath RM, Dewhurst O, Scott N, Guillou PJ. Extracellular matrix proteins and chemoradiotherapy: α5β1 integrin as a predictive marker in rectal cancer. Eur. J. Surg. Oncol. 28(1), 30–36 (2002).
    • 181 Jia Y, Zeng Z-Z, Markwart SM et al. Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res. 64(23), 8674–8681 (2004).
    • 182 Chen J, De S, Brainard J, Byzova TV. Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun. Adhes. 11(1), 1–11 (2004).
    • 183 Maglott A, Bartik P, Cosgun S et al. The small α5β1 integrin antagonist, SJ749, reduces proliferation and clonogenicity of human astrocytoma cells. Cancer Res. 66(12), 6002–6007 (2006).
    • 184 Dingemans A-MC, Van Den Boogaart V, Vosse BA, Van Suylen R-J, Griffioen AW, Thijssen VL. Integrin expression profiling identifies integrin alpha5 and beta1 as prognostic factors in early stage non-small cell lung cancer. Mol. Cancer 9(152), doi:10.1186/1476-4598-9-152 (2010) (Epub ahead of print).
    • 185 Faouzi M, Hague F, Potier M, Ahidouch A, Sevestre H, Ouadid-Ahidouch H. Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J. Cell. Physiol. 226(2), 542–551 (2011).
    • 186 Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med. Chem. 7(1), 3–18 (2007).
    • 187 Fasanaro P, Greco S, Lorenzi M et al. An integrated approach for experimental target identification of hypoxia-induced miR-210. J. Biol. Chem. 284(50), 35134–35143 (2009).
    • 188 Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 19(4), 439–448 (2009).
    • 189 Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr. Pharm. Des. 14(28), 2999–3019 (2008).
    • 190 Kumar SR, Quinn TP, Deutscher SL. Evaluation of an 111In-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor expressing breast carcinomas. Clin. Cancer Res. 13(20), 6070–6079 (2007).
    • 191 Upadhyay KK, Meins JFL, Misra A et al. Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(γ-benzyl glutamate) copolymers. Biomacromolecules 10(10), 2802–2808 (2009).
    • 192 Upadhyay KK, Bhatt AN, Castro E et al. In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol. Biosci. 10(5), 503–512 (2010).
    • 193 Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 80(21), 1921–1943 (2007).
    • 194 Rameez S, Alosta H, Palmer AF. Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier. Bioconjug. Chem. 19(5), 1025–1032 (2008).
    • 195 Jain JP, Jatana M, Chakrabarti A, Kumar N. Amphotericin-B-loaded polymersomes formulation (PAMBO) based on (PEG)3-PLA copolymers: an in vivo evaluation in a murine model. Mol. Pharm. 8(1), 204–212 (2011).
    • 196 Ayen WY, Kumar N. In vivo evaluation of doxorubicin-loaded (PEG)(3)-PLA nanopolymersomes (PolyDoxSome) using DMBA-induced mammary carcinoma rat model and comparison with marketed LipoDox. Pharm. Res. 29(9), 2522–2533 (2012).
    • 197 Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012).
    • 198 Salvati A, Pitek AS, Monopoli MP et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nano 8(2), 137–143 (2013).
    • 199 Carroll MV, Sim RB. Complement in health and disease. Adv. Drug Deliv. Rev. 63(12), 965–975 (2011).
    • 200 Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11(9), 785–797 (2010).
    • 201 Pomeroy C, Mitchell J, Eckert E, Raymond N, Crosby R, Dalmasso AP. Effect of body weight and caloric restriction on serum complement proteins, including Factor D/adipsin: studies in anorexia nervosa and obesity. Clin. Exp. Immunol. 108(3), 507–515 (1997).
    • 202 Macor P, Tedesco F. Complement as effector system in cancer immunotherapy. Immunol. Lett. 111(1), 6–13 (2007).
    • 203 Carter D, Lieber A. Protein engineering to target complement evasion in cancer. FEBS Lett. 588(2), 334–340 (2014).
    • 204 Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148(2), 135–146 (2010).
    • 205 Choi KY, Chung H, Min KH et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31(1), 106–114 (2010).
    • 206 Choi KY, Saravanakumar G, Park JH, Park K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf. B Biointerfaces 99(0), 82–94 (2012).
    • 207 Chandrawati R, Caruso F. Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 28(39), 13798–13807 (2012).