We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanomaterials for enhanced immunity as an innovative paradigm in nanomedicine

    Anushree Seth

    Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 305–764, South Korea

    ,
    Doo-Byoung Oh

    Biochemicals & Synthetic Biology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahakro, Yuseong-gu, Daejeon 305–806, South Korea

    &
    Yong Taik Lim

    *Author for correspondence:

    E-mail Address: yongtaik@skku.edu

    SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 440–746, South Korea

    Published Online:https://doi.org/10.2217/nnm.14.200

    Since the advent of nanoparticle technology, novel and versatile properties of nanomaterials have been introduced, which has constantly expanded their applications in therapeutics. Introduction of nanomaterials for immunomodulation has opened up new avenues with tremendous potential. Interesting properties of nanoparticles, such as adjuvanticity, capability to enhance cross-presentation, polyvalent presentation, siRNA delivery for silencing of immunesuppressive gene, targeting and imaging of immune cells have been known to have immense utility in vaccination and immunotherapy. A thorough understanding of the merits associated with nanomaterials is crucial for designing of modular and versatile nanovaccines, for improved immune response. With the emerging prerequisites of vaccination, nanomaterial-based immune stimulation, seems to be capable of taking the field of immunization to a next higher level.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature 462(7272), 449–460 (2009).
    • 2 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124(4), 783–801 (2006).
    • 3 Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 17(4), 338–344 (2005).
    • 4 Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science 296(5566), 298–300 (2002).
    • 5 Murray PJ. NOD proteins: an intracellular pathogen-recognition system or signal transduction modifiers? Curr. Opin. Immunol. 17(4), 352–358 (2005).
    • 6 Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J. Clin. Oncol. 22(6), 1136–1151 (2004).
    • 7 Marshall HD, Urban SL, Welsh RM. Virus-induced transient immune suppression and the inhibition of T cell proliferation by type I interferon. J. Virol. 85(12), 5929–5939 (2011).
    • 8 Cho MH, Ahn HJ, Ha HJ et al. Bacillus anthracis capsule activates caspase-1 and induces interleukin-1β release from differentiated THP-1 and human monocyte-derived dendritic cells. Infect. Immun. 78(1), 387–392 (2010).
    • 9 Finlay BB, Mcfadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124(4), 767–782 (2006).
    • 10 Coombes BK, Valdez Y, Finlay BB. Evasive maneuvers by secreted bacterial proteins to avoid innate immune responses. Curr. Biol. 14(19), R856–R867 (2004).
    • 11 Des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 116(1), 1–27 (2006).
    • 12 Akagi T, Wang X, Uto T, Baba M, Akashi M. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28(23), 3427–3436 (2007).
    • 13 Myc A, Kukowska-Latallo JF, Smith DM et al. Nanoemulsion nasal adjuvant W805EC induces dendritic cell engulfment of antigen-primed epithelial cells. Vaccine 31(7), 1072–1079 (2013).
    • 14 Thyagarajan R, Arunkumar N, Song W. Polyvalent antigens stabilize B cell antigen receptor surface signaling microdomains. J. Immunol. 170(12), 6099–6106 (2003).
    • 15 Dodd CH, Hsu HC, Chu WJ et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods 256(1–2), 89–105 (2001).
    • 16 Shakweh M, Besnard M, Nicolas V, Fattal E. Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by peyer's patches in mice. Eur. J. Pharm. Biopharm. 61(1–2), 1–13 (2005).
    • 17 Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J. Drug Target. 15(10), 701–713 (2007).
    • 18 Amidi M, Romeijn SG, Verhoef JC et al. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 25(1), 144–153 (2007).
    • 19 Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8(2), 151–158 (2009).
    • 20 Hailemichael Y, Dai Z, Jaffarzad N et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat. Med. 19(4), 465–472 (2013).• Demonstrates the importance of rate of antigen release in immuno-stimulation.
    • 21 Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4(6), 469–478 (2004).
    • 22 Moyano DF, Goldsmith M, Solfiell DJ et al. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 134(9), 3965–3967 (2012).
    • 23 Chavez-Santoscoy AV, Roychoudhury R, Pohl NLB, Wannemuehler MJ, Narasimhan B, Ramer-Tait AE. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles. Biomaterials 33(18), 4762–4772 (2012).
    • 24 Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7(1), 41–51 (2007).
    • 25 Wang BZ, Xu R, Quan F-S, Kang SM, Wang L, Compans RW. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PLoS ONE 5(11), e13972 (2010).
    • 26 Hatakeyama H, Ito E, Akita H et al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J. Control. Release 139(2), 127–132 (2009).
    • 27 Trumpfheller C, Longhi MP, Caskey M et al. Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J. Intern. Med. 271(2), 183–192 (2012).
    • 28 Ahrens ET, Bulte JWM. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13(10), 755–763 (2013).
    • 29 Hobo W, Novobrantseva TI, Fredrix H et al. Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol. Immunother. 62(2), 285–297 (2013).
    • 30 Akita H, Kogure K, Moriguchi R et al. Reprint of: Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation. J. Control. Release 149(1), 58–64 (2011).
    • 31 Efremov DG, Gobessi S, Longo PG. Signaling pathways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun. Rev. 7(2), 102–108 (2007).
    • 32 Pejawar-Gaddy S, Kovacs J, Barouch D, Chen B, Irvine D. Design of lipid nanoparticle delivery agents for multivalent display of recombinant Env trimers in HIV vaccination. Retrovirology 9(2), 1–1 (2012).
    • 33 Bershteyn A, Hanson MC, Crespo MP et al. Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. J. Control. Release 157(3), 354–365 (2012).
    • 34 Chen J, Li Z, Huang H et al. Improved antigen cross-presentation by polyethyleneimine-based nanoparticles. Int. J. Nanomed. 6, 77–84 (2011).
    • 35 Stano A, Van Der Vlies AJ, Martino MM, Swartz MA, Hubbell JA, Simeoni E. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine 29(4), 804–812 (2011).
    • 36 Uto T, Wang X, Sato K et al. Targeting of antigen to dendritic cells with poly(γ-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J. Immunol. 178(5), 2979–2986 (2007).
    • 37 Mukai Y, Yoshinaga T, Yoshikawa M et al. Induction of endoplasmic reticulum–endosome fusion for antigen cross-presentation induced by poly (γ-glutamic acid) nanoparticles. J. Immunol. 187(12), 6249–6255 (2011).
    • 38 Kaminski DA, Lee FEH. Revolutions in antibodies against influenza virus. Front. Immunol. 2, 76 (2011).
    • 39 Kanekiyo M, Wei CJ, Yassine HM et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499(7456), 102–106 (2013).
    • 40 Hashemi H, Pouyanfard S, Bandehpour M et al. Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza a virus challenge. PLoS ONE 7(9), e45765 (2012).
    • 41 Lin AY, Mattos Almeida JP, Bear A et al. Gold nanoparticle delivery of modified cpg stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS ONE 8(5), e63550 (2013).
    • 42 Combadière B, Mahé B. Particle-based vaccines for transcutaneous vaccination. Comp. Immunol. Microbiol. Infect. Dis. 31(2–3), 293–315 (2008).
    • 43 De Titta A, Ballester M, Julier Z et al. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci. USA USA 110(49), 19902–19907 (2013).
    • 44 Stone GW, Barzee S, Snarsky V et al. Nanoparticle-delivered multimeric soluble cd40l dna combined with toll-like receptor agonists as a treatment for melanoma. PLoS ONE 4(10), e7334 (2009).
    • 45 Sexton A, Whitney PG, Chong S-F et al. A protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsules. ACS Nano 3(11), 3391–3400 (2009).
    • 46 Wilson JT, Keller S, Manganiello MJ et al. pH-responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano 7(5), 3912–3925 (2013).
    • 47 Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 112(1), 26–34 (2006).
    • 48 Irvine DJ, Swartz MA, Szeto GL. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12(11), 978–990 (2013).•• Reviews the designs of synthetic vaccines for immunomodulation.
    • 49 Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat. Med. 19(12), 1597–1608 (2013).
    • 50 Gutierro I, Hernández RM, Igartua M, Gascón AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21(1–2), 67–77 (2002).
    • 51 Zhu Q, Talton J, Zhang G, Cunningham T, Berzofsky Jay A. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat. Med. 18(8), 1 (2012).
    • 52 Bivas-Benita M, Laloup M, Versteyhe S et al. Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int. J. Pharm. 266(1–2), 17–27 (2003).
    • 53 Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5(4), 387–391 (1999).
    • 54 Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol. 42(12), 821–826 (1990).
    • 55 Clark MA, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv. Drug Deliv. Rev. 50(1–2), 81–106 (2001).
    • 56 Gupta PN, Vyas SP. Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf. B. Biointerfaces 82(1), 118–125 (2011).
    • 57 Garinot M, Fiévez V, Pourcelle V et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release 120(3), 195–204 (2007).
    • 58 Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin. Microbiol. Rev. 14(2), 430–445 (2001).
    • 59 Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6(2), 148–158 (2006).
    • 60 Noh YW, Hong JH, Shim SM et al. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew. Chem. Int. Ed. 52(30), 7684–7689 (2013).
    • 61 Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 50(1), 147–160 (2000).
    • 62 Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B. Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS ONE 6(3), e17642 (2011).
    • 63 Bivas-Benita M, Van Meijgaarden KE, Franken KLMC et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22(13–14), 1609–1615 (2004).
    • 64 Xu J, Dai W, Wang Z, Chen B, Li Z, Fan X. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by streptococcus pneumoniae. Clin. Vaccine Immunol. 18(1), 75–81 (2011).
    • 65 Xu W, Shen Y, Jiang Z, Wang Y, Chu Y, Xiong S. Intranasal delivery of chitosan–DNA vaccine generates mucosal SIgA and anti-CVB3 protection. Vaccine 22(27–28), 3603–3612 (2004).
    • 66 Taki AC, Kikidopoulos N, Baird FJ, Smooker PM. Improving the immunogenicity of DNA vaccines: a nano-sized task? In: In DNA Vaccines: Types, Advantages and Limitations. Donnelly EC, Dixon AM (Eds). Nova Science, NY, USA, 153–181 (2012).
    • 67 Li AV, Moon JJ, Abraham W et al. Generation of effector memory T cell–based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5(204), 204ra130 (2013).
    • 68 Yang M, Lai SK, Wang YY et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. 50(11), 2597–2600 (2011).
    • 69 Swartz MA, Hubbell JA, Reddy ST. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin. Immunol. 20(2), 147–156 (2008).
    • 70 Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005).
    • 71 Reddy ST, Van Der Vlies AJ, Simeoni E et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotech. 25(10), 1159–1164 (2007).• Demonstrates the role of nanoparticle size and surface in lymph node migration.
    • 72 Videira MA, Gano L, Santos C, Neves M, Almeida AJ. Lymphatic uptake of lipid nanoparticles following endotracheal administration. J. Microencaps. 23(8), 855–862 (2006).
    • 73 Videira MA, Botelho MF, Santos AC, Gouveia LF, Pedroso De Lima JJ, Almeida AJ. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target. 10(8), 607–613 (2002).
    • 74 Bargoni A, Cavalli R, Caputo O, Fundarò A, Gasco M, Zara G. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm. Res. 15(5), 745–750 (1998).
    • 75 Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35(2), 814–824 (2014).
    • 76 Liu H, Moynihan KD, Zheng Y et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507(7493), 519–522 (2014).
    • 77 Gunzer M. Vaccine adjuvants: tailor-made mast-cell granules. Nat. Mater. 11(3), 181–182 (2012).
    • 78 Kunder CA, John ALS, Li GJ et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206(11), 2455–2467 (2009).
    • 79 Romani N, Flacher V, Tripp CH, Sparber F, Ebner S, Stoitzner P. Targeting skin dendritic cells to improve intradermal vaccination. In: Intradermal Immunization. Teunissen MBM (Ed.). Springer Berlin Heidelberg, 113–138 (2012).
    • 80 Matsuo K, Hirobe S, Okada N, Nakagawa S. Frontiers of transcutaneous vaccination systems: novel technologies and devices for vaccine delivery. Vaccine 31(19), 2403–2415 (2013).
    • 81 Zhan X, Tran KK, Shen H. Effect of the poly(ethylene glycol) (PEG) density on the access and uptake of particles by antigen-presenting cells (APCs) after subcutaneous administration. Mol. Pharm. 9(12), 3442–3451 (2012).
    • 82 Mittal A, Raber AS, Schaefer UF et al. Non-invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization. Vaccine 31(34), 3442–3451 (2013).
    • 83 Jain S, Yap WT, Irvine DJ. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and cpg oligonucleotide delivery to antigen-presenting cells. Biomacromolecules 6(5), 2590–2600 (2005).
    • 84 Elamanchili P, Lutsiak CME, Hamdy S, Diwan M, Samuel J. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J. Immunother. 30(4), 378–395 (2007).
    • 85 Wang X, Uto T, Akagi T, Akashi M, Baba M. Poly(γ-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an AIDS vaccine. J. Med. Virol. 80(1), 11–19 (2008).
    • 86 Faisal SM, Chen JW, Mcdonough SP, Chang CF, Teng CH, Chang YF. Immunostimulatory and antigen delivery properties of liposomes made up of total polar lipids from non-pathogenic bacteria leads to efficient induction of both innate and adaptive immune responses. Vaccine 29(13), 2381–2391 (2011).
    • 87 Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ. Localized immunotherapy via liposome-anchored anti-cd137 + il-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 73(5), 1547–1558 (2013).
    • 88 Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl. Acad. Sci. USA 109(4), 1080–1085 (2012).
    • 89 Ilyinskii PO, Roy CJ, O'neil CP et al. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 32(24), 2882–2895 (2014).
    • 90 Keijzer C, Slütter B, Van Der Zee R, Jiskoot W, Van Eden W, Broere F. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS ONE 6(11), e26684 (2011).
    • 91 Chua BY, Al Kobaisi M, Zeng W, Mainwaring D, Jackson DC. Chitosan microparticles and nanoparticles as biocompatible delivery vehicles for peptide and protein-based immunocontraceptive vaccines. Mol. Pharm. 9(1), 81–90 (2011).
    • 92 Pattani A, Patravale VB, Panicker L, Potdar PD. Immunological effects and membrane interactions of chitosan nanoparticles. Mol. Pharm. 6(2), 345–352 (2009).
    • 93 Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62(1), 3–11 (2010).
    • 94 Petersen LK, Ramer-Tait AE, Broderick SR et al. Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials 32(28), 6815–6822 (2011).•• Systematically illustrates the molecular designs of nanoparticle for pathogen mimicking vaccination.
    • 95 Keler T, Ramakrishna V, Fanger MW. Mannose receptor-targeted vaccines. Expert Opin. Biol. Ther. 4(12), 1953–1962 (2004).
    • 96 Salman HH, Irache JM, Gamazo C. Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine 27(35), 4784–4790 (2009).
    • 97 Yang M, Flavin K, Kopf I et al. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and nlrp3 inflammasome activation. Small 9(24), 4194–4206 (2013).
    • 98 Yazdi AS, Guarda G, Riteau N et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA 107(45), 19449–19454 (2010).
    • 99 Demento SL, Eisenbarth SC, Foellmer HG et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23), 3013–3021 (2009).
    • 100 Petersen LK, Xue L, Wannemuehler MJ, Rajan K, Narasimhan B. The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells. Biomaterials 30(28), 5131–5142 (2009).
    • 101 Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 9(9), 1095–1107 (2010).
    • 102 Kreuter J, Berg U, Liehl E, Soliva M, Speiser PP. Influence of the particle size on the adjuvant effect of particulate polymeric adjuvants. Vaccine 4(2), 125–129 (1986).
    • 103 Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20(10), 1006–1010 (2002).
    • 104 Heo MB, Lim YT. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 35(1), 590–600 (2014).
    • 105 Heo MB, Cho MY, Lim YT. Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta Biomater. 10(5), 2169–2176 (2014).
    • 106 Kim JH, Noh YW, Heo MB, Cho MY, Lim YT. Multifunctional hybrid nanoconjugates for efficient in vivo delivery of immunomodulating oligonucleotides and enhanced antitumor immunity. Angew. Chem. Int. Ed. 51(38), 9670–9673 (2012).
    • 107 Alshamsan A, Haddadi A, Hamdy S et al. STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm. 7(5), 1643–1654 (2010).
    • 108 Massagué J. TGFβ in cancer. Cell 134(2), 215–230 (2008).
    • 109 Yang L, Pang Y, Moses HL. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31(6), 220–227 (2010).
    • 110 Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8(4), 3636–3645 (2014).
    • 111 Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26(1), 677–704 (2008).
    • 112 Wei M, Chen N, Li J et al. Polyvalent immunostimulatory nanoagents with self-assembled cpg oligonucleotide-conjugated gold nanoparticles. Angew. Chem. Int. Ed. 51(5), 1202–1206 (2012).
    • 113 Shukoor MI, Natalio F, Tahir MN et al. Pathogen-mimicking MnO nanoparticles for selective activation of the TLR9 pathway and imaging of cancer cells. Adv. Funct. Mater. 19(23), 3717–3725 (2009).
    • 114 Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37(20), 2754–2794 (1998).
    • 115 Tsokos GC, Lambris JD, Finkelman FD, Anastassiou ED, June CH. Monovalent ligands of complement receptor 2 inhibit whereas polyvalent ligands enhance anti-Ig-induced human B cell intracytoplasmic free calcium concentration. J. Immunol. 144(5), 1640–1645 (1990).
    • 116 Watson DS, Platt VM, Cao L, Venditto VJ, Szoka FC. Antibody response to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrilotriacetic acid in mice. Clin. Vaccine Immunol. 18(2), 289–297 (2011).
    • 117 Lee I-H, Kwon HK, An S et al. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. Int. Ed. 51(35), 8800–8805 (2012).
    • 118 Chen YS, Hung YC, Lin W-H, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 21(19), 195101 (2010).
    • 119 Bright RA, Carter DM, Daniluk S et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 25(19), 3871–3878 (2007).
    • 120 Moon JJ, Suh H, Polhemus ME, Ockenhouse CF, Yadava A, Irvine DJ. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a plasmodium vivax malaria vaccine. PLoS ONE 7(2), e31472 (2012).
    • 121 Ashwood P, Thompson RPH, Powell JJ. Fine particles that adsorb lipopolysaccharide via bridging calcium cations may mimic bacterial pathogenicity towards cells. Exp. Biol. Med. 232(1), 107–117 (2007).
    • 122 Akagi T, Kim H, Akashi M. pH-Dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles. J. Biomater. Sci. Polym. Ed. 21(3), 315–328 (2010).
    • 123 Shen H, Ackerman AL, Cody V et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1), 78–88 (2006).
    • 124 Rosalia R, Silva A, Camps M et al. Efficient ex vivo induction of T cells with potent anti-tumor activity by protein antigen encapsulated in nanoparticles. Cancer Immunol. Immunother. 62(7), 1161–1173 (2013).
    • 125 Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16(10), 1217–1226 (2002).
    • 126 Sneh-Edri H, Likhtenshtein D, Stepensky D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm. 8(4), 1266–1275 (2011).
    • 127 Han R, Zhu J, Yang X, Xu H. Surface modification of poly(D,L-lactic-co-glycolic acid) nanoparticles with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. J. Biomed. Mater. Res. Part A 96A(1), 142–149 (2011).
    • 128 Li P, Luo Z, Liu P et al. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J. Control. Release 168(3), 271–279 (2013).
    • 129 Luo Z, Li P, Deng J et al. Cationic polypeptide micelle-based antigen delivery system: a simple and robust adjuvant to improve vaccine efficacy. J. Control. Release 170(2), 259–267 (2013).
    • 130 Kwon YJ, Standley SM, Goh SL, Fréchet JMJ. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release 105(3), 199–212 (2005).
    • 131 Hirosue S, Kourtis IC, Van Der Vlies AJ, Hubbell JA, Swartz MA. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: cross-presentation and T cell activation. Vaccine 28(50), 7897–7906 (2010).
    • 132 Li H, Li Y, Jiao J, Hu HM. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat. Nanotechnol. 6(10), 645–650 (2011).
    • 133 Shen SS, Yang YW. Antigen delivery for cross priming via the emulsion vaccine adjuvants. Vaccine 30(9), 1560–1571 (2012).
    • 134 Horth M, Lambrecht B, Khim MCL et al. Theoretical and functional analysis of the SIV fusion peptide. EMBO J. 10(10), 2747–2755 (1991).
    • 135 Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56(1), 365–394 (1987).
    • 136 Marsh M, Helenius A. Virus entry into animal cells. In: Advances In Virus Research. Karl Maramorosch FaM, Aaron JS (Eds). Academic Press, UT, USA, 107–151 (1989).
    • 137 Sasaki K, Kogure K, Chaki S et al. An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Anal. Bioanal. Chem. 391(8), 2717–2727 (2008).
    • 138 Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23(11), 1418–1423 (2005).
    • 139 Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine 3(3), 343–355 (2008).
    • 140 Klechevsky E, Flamar A-L, Cao Y et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 116(10), 1685–1697 (2010).
    • 141 Benitez-Ribas D, Adema GJ, Winkels G et al. Plasmacytoid dendritic cells of melanoma patients present exogenous proteins to CD4+ T cells after FcγRII-mediated uptake. J. Exp. Med. 203(7), 1629–1635 (2006).
    • 142 Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG. Chapter eight - Targeting nanoparticles to dendritic cells for immunotherapy. In: Methods In Enzymology. Nejat D (Ed.). Academic Press, UT, USA, 143–163 (2012).• Overviews the rationale for nanoparticle mediated vaccine delivery to dendritic cells.
    • 143 Tel J, Sittig SP, Blom RaM et al. Targeting Uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type i IFN secretion. J. Immunol. 191(10), 5005–5012 (2013).
    • 144 Cruz LJ, Tacken PJ, Fokkink R et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control. Release 144(2), 118–126 (2010).
    • 145 Yu B, Mao Y, Bai LY et al. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood 121(1), 136–147 (2013).
    • 146 Mao Y, Wang J, Zhao Y et al. A novel liposomal formulation of FTY720 (Fingolimod) for promising enhanced targeted delivery. Nanomed. Nanotechnol. Biol. Med. 10(2), 393–400 (2014).
    • 147 Gunn J, Wallen H, Veiseh O et al. A multimodal targeting nanoparticle for selectively labeling T cells. Small 4(6), 712–715 (2008).
    • 148 Zheng Y, Stephan MT, Gai SA, Abraham W, Shearer A, Irvine DJ. In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J. Control. Release 172(2), 426–435 (2013).
    • 149 Park J, Gao W, Whiston R, Strom TB, Metcalfe S, Fahmy TM. Modulation of CD4+ T lymphocyte lineage outcomes with targeted, nanoparticle-mediated cytokine delivery. Mol. Pharm. 8(1), 143–152 (2010).
    • 150 Aspord C, Laurin D, Janier MF et al. Paramagnetic nanoparticles to track and quantify in vivo immune human therapeutic cells. Nanoscale 5(23), 11409–11415 (2013).
    • 151 Cho NH, Cheong TC, Min JH et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nano. 6(10), 675–682 (2011).
    • 152 Boutry S, Laurent S, Vander Elst L, Muller RN. Cellular magnetic labeling with iron oxide nanoparticles. In: Nanoplatform-Based Molecular Imaging. John Wiley & Sons, Inc., NJ, USA, 309–331 (2011).
    • 153 Wilhelm C, Gazeau F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29(22), 3161–3174 (2008).
    • 154 Wilhelm C, Lavialle F, Péchoux C, Tatischeff I, Gazeau F. Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4(5), 577–582 (2008).
    • 155 Srinivas M, Cruz LJ, Bonetto F, Heerschap A, Figdor CG, De Vries IJM. Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials 31(27), 7070–7077 (2010).
    • 156 Lim YT, Cho MY, Kang JH et al. Perfluorodecalin/[InGaP/ZnS quantum dots] nanoemulsions as 19F MR/optical imaging nanoprobes for the labeling of phagocytic and nonphagocytic immune cells. Biomaterials 31(18), 4964–4971 (2010).
    • 157 Kim HM, Lee H, Hong KS et al. Synthesis and high performance of magnetofluorescent polyelectrolyte nanocomposites as mr/near-infrared multimodal cellular imaging nanoprobes. ACS Nano 5(10), 8230–8240 (2011).
    • 158 Kim HM, Noh YW, Park HS et al. Self-fluorescence of chemically crosslinked mri nanoprobes to enable multimodal imaging of therapeutic cells. Small 8(5), 666–670 (2012).
    • 159 Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat. Protocols 1(1), 73–79 (2006).
    • 160 Bhirde A, Xie J, Swierczewska M, Chen X. Nanoparticles for cell labeling. Nanoscale 3(1), 142–153 (2011).
    • 161 Ottobrini L, Martelli C, Trabattoni D, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur. J. Nucl. Med. Mol. Imag. 38(5), 949–968 (2011).
    • 162 Smirnov P, Lavergne E, Gazeau F et al. In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy. Magn. Reson. Med. 56(3), 498–508 (2006).
    • 163 Fahmy T, Fong P, Park J, Constable T, Saltzman WM. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J. 9(2), E171–E180 (2007).
    • 164 Noh YW, Jang YS, Ahn KJ, Lim YT, Chung BH. Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials 32(26), 6254–6263 (2011).
    • 165 Hu CMJ, Fang RH, Luk BT, Zhang L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8(12), 933–938 (2013).
    • 166 Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6(5), 446–465 (2011).
    • 167 Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 4(7), 411–414 (2009).
    • 168 Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev. 42(12), 5552–5576 (2013).