We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanoparticles and the blood coagulation system. Part II: safety concerns

    Anna N Ilinskaya

    Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA

    &
    Marina A Dobrovolskaia

    * Author for correspondence

    Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA.

    Published Online:https://doi.org/10.2217/nnm.13.49

    Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomedicine (Lond.)8(5),773–784 (2013).
    • Brook RD, Rajagopalan S, Pope CA 3rd et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation121(21),2331–2378 (2010).
    • Rückerl R, Ibald-Mulli A, Koenig W et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am. J. Respir. Crit. Care Med.173(4),432–441 (2006).
    • Baccarelli A, Martinelli I, Zanobetti A et al. Exposure to particulate air pollution and risk of deep vein thrombosis. Arch. Intern. Med.168(9),920–927 (2008).
    • Utell MJ, Frampton MW, Zareba W, Devlin RB, Cascio WE. Cardiovascular effects associated with air pollution: potential mechanisms and methods of testing. Inhal. Toxicol.14(12),1231–1247 (2002).
    • Furie B, Furie BC. Mechanisms of thrombus formation. N. Engl. J. Med.359(9),938–949 (2008).
    • Greish K, Thiagarajan G, Herd H et al. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology6(7),713–723. (2011).
    • Nabeshi H, Yoshikawa T, Matsuyama K et al. Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure. Nanotechnology23(4),045101 (2012).
    • Radomski A, Jurasz P, Alonso-Escolano D et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol.146(6),882–893 (2005).▪▪ Reported that nanoparticles activate platelets through a nontraditional pathway.
    • 10  Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Frohlich E. The role of nanoparticle size in hemocompatibility. Toxicology258(2–3),139–147 (2009).
    • 11  Nel AE, Madler L, Velegol D et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater.8(7),543–557 (2009).
    • 12  Tenzer S, Docter D, Rosfa S et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano5(9),7155–7167 (2011).
    • 13  Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA105(38),14265–14270 (2008).▪ Provides an overview of protein corona and relates it to nanoparticle biocompatibility.
    • 14  Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev.61(6),428–437 (2009).
    • 15  Sperling C, Fischer M, Maitz MF, Werner C. Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials30(27),4447–4456 (2009).▪ Reviews interactions between biomaterials and the coagulation system, and discusses the role of surface in hematocompatibility.
    • 16  Oslakovic C, Cedervall T, Linse S, Dahlback B. Polystyrene nanoparticles affecting blood coagulation. Nanomedicine8(6),981–986 (2012).▪ Demonstrates that activation or inhibition of the coagulation system depends on nanoparticle surface properties.
    • 17  Malik N, Wiwattanapatapee R, Klopsch R et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release65(1–2),133–148 (2000).
    • 18  Stasko NA, Johnson CB, Schoenfisch MH, Johnson TA, Holmuhamedov EL. Cytotoxicity of polypropylenimine dendrimer conjugates on cultured endothelial cells. Biomacromolecules8(12),3853–3859 (2007).
    • 19  Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond.)7(2),245–256 (2012).▪ Shows that nanoparticles can exaggerate the thrombogenicity of an inflammatory stimulus.
    • 20  Dobrovolskaia MA, Patri AK, Simak J et al. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm.9(3),382–393 (2011).
    • 21  Jones CF, Campbell RA, Franks Z et al. Cationic PAMAM dendrimers disrupt key platelet functions. Mol. Pharm.9(6),1599–1611 (2012).
    • 22  Inoue K, Takano H. Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. ScientificWorldJournal11,382–390 (2011).
    • 23  Inoue K, Takano H, Yanagisawa R, Koike E, Shimada A. Size effects of latex nanomaterials on lung inflammation in mice. Toxicol. Appl. Pharmacol.234(1),68–76 (2009).
    • 24  Inoue K. Promoting effects of nanoparticles/materials on sensitive lung inflammatory diseases. Environ. Health Prev. Med.16(3),139–143 (2011).
    • 25  McGuinnes C, Duffin R, Brown S et al. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol. Sci.119(2),359–368 (2011).
    • 26  Juliano RL, Hsu MJ, Peterson D, Regen SL, Singh A. Interactions of conventional or photopolymerized liposomes with platelets in vitro. Exp. Cell Res.146(2),422–427 (1983).
    • 27  Koziara JM, Oh JJ, Akers WS, Ferraris SP, Mumper RJ. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm. Res.22(11),1821–1828 (2005).
    • 28  Zbinden G, Wunderli-Allenspach H, Grimm L. Assessment of thrombogenic potential of liposomes. Toxicology54(3),273–280 (1989).
    • 29  Constantinescu I, Levin E, Gyongyossy-Issa M. Liposomes and blood cells: a flow cytometric study. Artif. Cells Blood Substit. Immobil. Biotechnol.31(4),395–424 (2003).
    • 30  Male R, Vannier WE, Baldeschwieler JD. Phagocytosis of liposomes by human platelets. Proc. Natl Acad. Sci. USA89(19),9191–9195 (1992).
    • 31  Nishiya T, Lam RT, Eng F, Zerey M, Lau S. Mechanistic study on toxicity of positively charged liposomes containing stearylamine to blood. Artif. Cells Blood Substit. Immobil. Biotechnol.23(4),505–512 (1995).
    • 32  Nishiya T, Sloan S. Interaction of RGD liposomes with platelets. Biochem. Biophys. Res. Commun.224(1),242–245 (1996).
    • 33  Reinish LW, Bally MB, Loughrey HC, Cullis PR. Interactions of liposomes and platelets. Thromb. Haemost.60(3),518–523 (1988).
    • 34  Dabbas S, Kaushik RR, Dandamudi S, Kuesters GM, Campbell RB. Importance of the liposomal cationic lipid content and type in tumor vascular targeting: physicochemical characterization and in vitro studies using human primary and transformed endothelial cells. Endothelium15(4),189–201 (2008).
    • 35  Campbell RB, Fukumura D, Brown EB et al. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res.62(23),6831–6836 (2002).
    • 36  Krasnici S, Werner A, Eichhorn ME et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int. J. Cancer105(4),561–567 (2003).
    • 37  Lowe KC, Bentley PK. Retention of perfluorochemicals in rat liver and spleen. Biomater. Artif. Cells Immobilization Biotechnol.20(2–4),1029–1031 (1992).
    • 38  Mitsuno T, Ohyanagi H. Present status of clinical studies of Fluosol-DA (20%) in Japan. Int. Anesthesiol. Clin.23(1),169–184 (1985).
    • 39  Vercellotti GM, Hammerschmidt DE, Craddock PR, Jacob HS. Activation of plasma complement by perfluorocarbon artificial blood: probable mechanism of adverse pulmonary reactions in treated patients and rationale for corticosteroids prophylaxis. Blood59(6),1299–1304 (1982).
    • 40  Cuignet OY, Wood BL, Chandler WL, Spiess BD. A second-generation blood substitute (perfluorodichlorooctane emulsion) generates spurious elevations in platelet counts from automated hematology analyzers. Anesth. Analg.90(3),517–522 (2000).
    • 41  Thomson H, Ali A, Harper NJ. Spurious propofol-induced coagulopathy in a patient with hepatic rupture. Anaesthesia63(9),1024–1025 (2008).
    • 42  Beule AG, Wilhelmi F, Kuhnel TS, Hansen E, Lackner KJ, Hosemann W. Propofol versus sevoflurane: bleeding in endoscopic sinus surgery. Otolaryngol. Head Neck Surg.136(1),45–50 (2007).
    • 43  Barregard L, Sallsten G, Andersson L et al. Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. Occup. Environ. Med.65(5),319–324 (2008).
    • 44  Nemmar A, Hoylaerts MF, Hoet PH, Nemery B. Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol. Lett.149(1–3),243–253 (2004).
    • 45  Ravichandran P, Baluchamy S, Gopikrishnan R et al. Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J. Biol. Chem.286(34),29725–29733 (2011).
    • 46  Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med.44(9),1689–1699 (2008).
    • 47  Pourazar J, Mudway IS, Samet JM et al. Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. Am. J. Physiol. Lung Cell. Mol. Physiol.289(5),L724–L730 (2005).
    • 48  Salvi S, Blomberg A, Rudell B et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am. J. Respir. Crit. Care Med.159(3),702–709 (1999).
    • 49  Salvi SS, Nordenhall C, Blomberg A et al. Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. Am. J. Respir. Crit. Care Med.161(2 Pt 1),550–557 (2000).
    • 50  Baulig A, Garlatti M, Bonvallot V et al. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol.285(3),L671–L679 (2003).
    • 51  Alfaro-Moreno E, Nawrot TS, Nemmar A, Nemery B. Particulate matter in the environment: pulmonary and cardiovascular effects. Curr. Opin. Pulm. Med.13(2),98–106 (2007).
    • 52  Erdely A, Hulderman T, Salmen R et al. Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett.9(1),36–43 (2009).
    • 53  Levi M, Schultz M, van der Poll T. Disseminated intravascular coagulation in infectious disease. Semin. Thromb. Hemost.36(4),367–377 (2010).
    • 54  Liao D, Heiss G, Chinchilli VM et al. Association of criteria pollutants with plasma hemostatic/inflammatory markers: a population-based study. J. Expo. Anal. Environ. Epidemiol.15(4),319–328 (2005).
    • 55  Ghio AJ, Hall A, Bassett MA, Cascio WE, Devlin RB. Exposure to concentrated ambient air particles alters hematologic indices in humans. Inhal. Toxicol.15(14),1465–1478 (2003).
    • 56  Nemmar A, Delaunois A, Nemery B et al. Inflammatory effect of intratracheal instillation of ultrafine particles in the rabbit: role of C-fiber and mast cells. Toxicol. Appl. Pharmacol.160(3),250–261 (1999).
    • 57  Berry JP, Arnoux B, Stanislas G, Galle P, Chretien J. A microanalytic study of particles transport across the alveoli: role of blood platelets. Biomedicine27(9–10),354–357 (1977).
    • 58  Nemmar A, Hoet PH, Vanquickenborne B et al. Passage of inhaled particles into the blood circulation in humans. Circulation105(4),411–414 (2002).
    • 59  Mills NL, Amin N, Robinson SD et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am. J. Respir. Crit. Care Med.173(4),426–431 (2006).
    • 60  Nemmar A, Hoet PH, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B. Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation107(8),1202–1208 (2003).
    • 61  Inoue K, Takano H, Yanagisawa R, Ichinose T, Shimada A, Yoshikawa T. Pulmonary exposure to diesel exhaust particles induces airway inflammation and cytokine expression in NC/Nga mice. Arch. Toxicol.79(10),595–599 (2005).
    • 62  Silva VM, Corson N, Elder A, Oberdorster G. The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol. Sci.85(2),983–989 (2005).
    • 63  Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci.77(1),126–134 (2004).
    • 64  Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci.77(1),117–125 (2004).
    • 65  Shvedova AA, Kisin ER, Mercer R et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol.289(5),L698–L708 (2005).
    • 66  Bihari P, Holzer M, Praetner M et al. Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology269(2–3),148–154 (2010).
    • 67  Semberova J, De Paoli Lacerda SH, Simakova O, Holada K, Gelderman MP, Simak J. Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett.9(9),3312–3317 (2009).▪ Discusses the mechanisms underlying platelet activation by carbon nanotubes.
    • 68  Lacerda SH, Semberova J, Holada K, Simakova O, Hudson SD, Simak J. Carbon nanotubes activate store-operated calcium entry in human blood platelets. ACS Nano5(7),5808–5813 (2011).
    • 69  Khandoga A, Stoeger T, Khandoga AG et al. Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J. Thromb. Haemost.8(7),1632–1640 (2010).
    • 70  Khandoga A, Stampfl A, Takenaka S et al. Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation109(10),1320–1325 (2004).
    • 71  Burke AR, Singh RN, Carroll DL et al. Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials32(26),5970–5978 (2011).
    • 72  Walker VG, Li Z, Hulderman T, Schwegler-Berry D, Kashon ML, Simeonova PP. Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol. Appl. Pharmacol.236(3),319–328 (2009).
    • 73  Yamawaki H, Iwai N. Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis: carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circ. J.70(1),129–140 (2006).
    • 74  Vallhov H, Qin J, Johansson SM et al. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett.6(8),1682–1686 (2006).
    • 75  Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett.168(1),58–74 (2007).
    • 76  Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Quantum dots hold promise for early cancer imaging and detection. Int. J. Cancer131(3),519–528 (2012).
    • 77  Geys J, Nemmar A, Verbeken E et al. Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ. Health Perspect.116(12),1607–1613 (2008).
    • 78  Ramot Y, Steiner M, Morad V et al. Pulmonary thrombosis in the mouse following intravenous administration of quantum dot-labeled mesenchymal cells. Nanotoxicology4(1),98–105 (2010).
    • 79  Yan M, Zhang Y, Xu K, Fu T, Qin H, Zheng X. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology282(3),94–103 (2011).
    • 80  Wang L, Zhang J, Zheng Y, Yang J, Zhang Q, Zhu X. Bioeffects of CdTe quantum dots on human umbilical vein endothelial cells. J. Nanosci. Nanotechnol.10(12),8591–8596 (2010).
    • 81  Chen G, Ni N, Zhou J et al. Fibrinogen clot induced by gold-nanoparticle in vitro. J. Nanosci. Nanotechnol.11(1),74–81 (2011).
    • 82  Dobrovolskaia MA, Patri AK, Zheng J et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine5(2),106–117 (2009).
    • 83  Deb S, Patra HK, Lahiri P, Dasgupta AK, Chakrabarti K, Chaudhuri U. Multistability in platelets and their response to gold nanoparticles. Nanomedicine7(4),376–384 (2011).
    • 84  Bartczak D, Muskens OL, Nitti S, Sanchez-Elsner T, Millar TM, Kanaras AG. Interactions of human endothelial cells with gold nanoparticles of different morphologies. Small8(1),122–130 (2012).
    • 85  Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res.12(7),2313–2333 (2010).
    • 86  Pan Y, Leifert A, Ruau D et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small5(18),2067–2076 (2009).
    • 87  Ragaseema VM, Unnikrishnan S, Kalliyana Krishnan V, Krishnan LK. The antithrombotic and antimicrobial properties of PEG-protected silver nanoparticle coated surfaces. Biomaterials33(11),3083–3092 (2012).
    • 88  Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano3(6),1357–1364 (2009).
    • 89  Shrivastava S, Singh SK, Mukhopadhyay A, Sinha AS, Mandal RK, Dash D. Negative regulation of fibrin polymerization and clot formation by nanoparticles of silver. Colloids Surf. B Biointerfaces82(1),241–246 (2011).
    • 90  Jun EA, Lim KM, Kim K et al. Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity. Nanotoxicology5(2),157–167 (2011).
    • 91  Guildford AL, Poletti T, Osbourne LH, Di Cerbo A, Gatti AM, Santin M. Nanoparticles of a different source induce different patterns of activation in key biochemical and cellular components of the host response. J. R. Soc. Interface6(41),1213–1221 (2009).
    • 92  Zhu MT, Feng WY, Wang B et al. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology247(2–3),102–111 (2008).
    • 93  Herrmann IK, Urner M, Hasler M et al. Iron core/shell nanoparticles as magnetic drug carriers: possible interactions with the vascular compartment. Nanomedicine (Lond.)6(7),1199–1213 (2011).
    • 94  Simberg D, Zhang WM, Merkulov S et al. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. J. Control. Release140(3),301–305 (2009).
    • 95  Xia T, Kovochich M, Liong M et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano3(10),3273–3286 (2009).
    • 96  Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small3(8),1341–1346 (2007).
    • 97  Merget R, Bauer T, Kupper HU et al. Health hazards due to the inhalation of amorphous silica. Arch. Toxicol.75(11–12),625–634 (2002).
    • 98  Tavano R, Segat D, Reddi E et al. Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles. Nanomedicine (Lond.)5(6),881–896 (2010).
    • 99  Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW. Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. Int. J. Nanomed.7,631–639 (2012).
    • 100  Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int. J. Nanomed.6,2821–2835 (2011).
    • 101  Liu X, Sun J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials31(32),8198–8209 (2010).
    • 102  Napierska D, Thomassen LC, Rabolli V et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small5(7),846–853 (2009).
    • 103  Bauer AT, Strozyk EA, Gorzelanny C et al. Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells. Biomaterials32(33),8385–8393 (2011).