We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications

    Hélder A Santos

    Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland

    Authors contributed equally

    Search for more papers by this author

    ,
    Ermei Mäkilä

    Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland

    Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, Turku, FI-20014, Finland

    ,
    Anu J Airaksinen

    Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland

    ,
    Luis M Bimbo

    Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland

    &
    Jouni Hirvonen,‡

    *Author for correspondence:

    E-mail Address: jouni.hirvonen@helsinki.fi

    Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland

    Authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/nnm.13.223

    The research on porous silicon (PSi) materials for biomedical applications has expanded greatly since the early studies of Leigh Canham more than 25 years ago. Currently, PSi nanoparticles are receiving growing attention from the scientific biomedical community. These nanostructured materials have emerged as promising multifunctional and versatile platforms for nanomedicine in drug delivery, diagnostics and therapy. The outstanding properties of PSi, including excellent in vivo biocompatibility and biodegradability, have led to many applications of PSi for delivery of therapeutic agents. In this review, we highlight current advances and recent efforts on PSi nanoparticles regarding the production properties, efficient drug delivery, multidrug delivery, permeation across biological barriers, biosafety and in vivo tracking for biomedical applications. The constant boost on successful preclinical in vivo data reported so far makes this the ‘golden age’ for PSi, which is expected to finally be translated into the clinic in the near future.

    Papers of special note have been highlighted as:

    •• of considerable interest

    References

    • 1 Cheng ZL, Al Zaki A, Hui JZ et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).•• Excellent evaluation of the potential value of targeting and imaging modalities in multifunctional nanoparticles.
    • 2 Santos HA, Bimbo LM, Lehto VP et al. Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr. Drug Discov. Technol. 8, 228–249 (2011).
    • 3 Serda RE, Godin B, Blanco E et al. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim. Biophys. Acta. 1810 317–329 (2011).
    • 4 Duncan R, Gaspar R. Nanomedicine(s) under the Microscope. Mol. Pharmceutics 8, 2101–2141 (2011).
    • 5 Blanco E, Hsiao A, Mann AP et al. Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci. 102, 1247–1252 (2011).
    • 6 Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharmceutics 7, 1899–1912 (2010).
    • 7 Huang H-C, Barua S, Sharma G et al. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release 155, 344–357 (2011).
    • 8 Lee DE, Koo H, Sun IC et al. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012).
    • 9 Wang C-F, Mäkilä EM, Kaasalainen MH et al. Copper-free azideealkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake. Biomaterials 35(4), 1257–1266 (2013).
    • 10 Santos HA, Bimbo LM, Herranz B et al. Nanostructured porous silicon in preclinical imaging: moving from bench to bedside. J. Mater. Res. 28, 152–164 (2013).
    • 11 Kinnari PJ, Hyvönen ML, Mäkilä EM et al. Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials 34, 9134–9141 (2013).
    • 12 Sarparanta M, Bimbo LM, Rytkönen J et al. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol. Pharmaceutics 9, 654–663 (2012).
    • 13 Santos HA, Hirvonen J. Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine (Lond.) 7, 1281–1284 (2012).
    • 14 Bimbo LM, Sarparanta M, Mäkilä E et al. Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4, 3184–3192 (2012).
    • 15 Santos HA, Salonen J, Bimbo LM et al. Mesoporous materials as controlled drug delivery formulations. J. Drug Deliv. Sci. Tech. 21, 139–155 (2011).
    • 16 Limnell T, Santos HA, Mäkilä E et al. Drug delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods. J. Pharm. Sci. 100, 3294–3306 (2011).
    • 17 Bimbo LM, Mäkilä E, Raula J et al. Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 32, 9089–9099 (2011).
    • 18 Bimbo LM, Mäkilä E, Laaksonen T et al. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32, 2625–2633 (2011).
    • 19 Meng H, Xing G, Blanco E et al. Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine 8, 136–146 (2012).
    • 20 Godin B, Chiappini C, Srinivasan S et al. Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv. Funct. Mater. 22, 4225–4235 (2012).
    • 21 Godin B, Tasciotti E, Liu XW et al. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc. Chem. Res. 44, 979–989 (2011).•• Excellent work about the design and fabrication of multistage nanovectors for simultaneous drug delivery and imaging.
    • 22 Chiappini C, Tasciotti E, Serda RE et al. Mesoporous silicon particles as intravascular drug delivery vectors: fabrication, in-vitro, and in-vivo assessments. Phys. Status Solidi C 8, 1826–1832 (2011).
    • 23 Gu L, Hall DJ, Qin Z et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 4, 2326 (2013).
    • 24 Gu L, Ruff LE, Qin Z et al. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv. Mater. 24, 3981–3987 (2012).
    • 25 Wu EC, Andrew JS, Cheng L et al. Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32, 1957–1966 (2011).
    • 26 von Maltzahn G, Park JH, Lin KY et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011).
    • 27 Kinsella JM, Ananda S, Andrew JS et al. Enhanced magnetic resonance contrast of Fe3O4 nanoparticles trapped in a porous silicon nanoparticle host. Adv. Mater. 23, H248–H253 (2011).
    • 28 Gu L, Park JH, Duong KH et al. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6, 2546–2552 (2010).
    • 29 Park J-H, Gu L, von Maltzahn G, Ruoslahti E et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009).
    • 30 Sarparanta MP, Bimbo LM, Mäkilä EM et al. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33, 3353–3362 (2012).
    • 31 Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J. Pharm. Sci. 97, 632–653 (2008).•• Outstanding review reporting the methods of preparation and modification of porous silicon materials.
    • 32 Shahbazi M-A, Herranz B, Santos HA. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2, 296–312 (2012).
    • 33 Kinnari P, Mäkilä E, Heikkilä T et al. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm. 414, 148–156 (2011).
    • 34 Vallet-Regi M. Nanostructured mesoporous silica matrices in nanomedicine. J. Intern. Med. 267, 22–43 (2010).
    • 35 Vallet-Regi M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 12, 5934–5943 (2006).
    • 36 Horcajada P, Rámila A, Pérez-Pariente J et al. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater.68, 105–109 (2004).
    • 37 Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: Drug delivery system. Chem. Mater. 13, 308–311 (2000).
    • 38 Salonen J, Laitinen L, Kaukonen AM et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J. Control. Release 108, 362–374 (2005).•• Pioneering work on drug loading and release testing with mesoporous silicon.
    • 39 Kaukonen AM, Laitinen L, Salonen J et al. Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. Eur. J. Pharm. Biopharm. 66, 348–356 (2007).
    • 40 Shahbazi MA, Hamidi M, Mäkilä EM et al. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34, 7776–7789 (2013).•• Excellent article evaluating the immunotoxicity and biocompatility aspects of mesoporous silicon nanoparticles.
    • 41 Bimbo LM, Peltonen L, Hirvonen J, Santos HA. Toxicological profile of therapeutic nanodelivery systems. Curr. Drug Metab. 13, 1068–1086 (2012).
    • 42 Shahbazi MA, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr. Drug Metab. 14, 28–56 (2013).
    • 43 Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA. Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol. Pharmaceutics 7, 227–236 (2010).
    • 44 Kovalainen M, Mönkäre J, Kaasalainen M et al. Development of porous silicon nanocarriers for parenteral peptide delivery. Mol. Pharmaceutics 10, 353–359 (2013).
    • 45 Kovalainen M, Mönkäre J, Mäkilä E et al. Mesoporous silicon (PSi) for sustained peptide delivery: effect of PSi microparticle surface chemistry on peptide YY3–36 release. Pharm. Res. 29, 837–846 (2012).
    • 46 Kilpeläinen M, Mönkäre J, Vlasova MA et al. Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. Eur. J. Pharm. Biopharm. 77, 20–25 (2011).
    • 47 Santos HA, Riikonen J, Salonen J et al. In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. Acta Biomater. 6, 2721–2731 (2010).
    • 48 Bimbo LM, Sarparanta M, Santos HA et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4, 3023–3032 (2010).•• Outstanding article demonstrating the biocompatibility of porous silicon nanoparticles and the radiolabelling of its surface for stable in vivo imaging.
    • 49 Vale N, Mäkilä E, Salonen J et al. New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur. J. Pharm. Biopharm. 81, 314–323 (2012).
    • 50 Tahvanainen M, Rotko T, Mäkilä E et al. Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. Int. J. Pharm. 422, 125–131 (2012).
    • 51 Mäkilä E, Bimbo LM, Kaasalainen M et al. Amine-modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28, 14045–14054 (2012).
    • 52 Uhlir A. Electrolytic shaping of germanium and silicon. Bell Syst. Tech. J. 35, 333–347 (1956).
    • 53 Turner DR. Electropolishing silicon in hydrofluoric acid solutions. J. Electrochem. Soc. 105, 402–408 (1958).
    • 54 Watanabe Y, Sakai T. Application of a thick anode film to semiconductor devices. Rev. Elec. Commun. Lab. 19, 899 (1971).
    • 55 Salonen J, Lehto V-P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J. 137, 162–172 (2008).
    • 56 Korotcenkov G, Cho BK. Silicon porosification: state of the art. Crit. Rev. Solid State Mater. Sci. 35, 153–260 (2010).
    • 57 Lehmann V, Stengl R, Luigart A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mater. Sci. Eng. B 69, 11–22 (2000).
    • 58 Lehmann V, Luigart A, Corbel V. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Proceed. Inter. Symp. Pits Pores 97, 132–139 (1997).
    • 59 Lehto V-P, Salonen J, Santos HA, Riikonen J. Nanostructured silicon based materials as a drug delivery system for insoluble drugs. In: Drug Delivery Strategies for Poorly Water-Soluble Drugs. Wiley-Blackwell, USA, 477–508 (2013).
    • 60 Liu D, Mäkilä E, Zhang H et al. Nanostructured porous silicon-solid lipid nanocomposite: towards enhanced cytocompatibility and stability, reduced cellular association, and prolonged drug release. Adv. Funct. Mater. 23, 1893–1902 (2013).
    • 61 Liu D, Bimbo LM, Mäkilä E et al. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. J. Control. Release 170, 268–278 (2013).
    • 62 Jane A, Dronov R, Hodges A, Voelcker NH. Porous silicon biosensors on the advance. Trends Biotechnol. 27, 230–239 (2009).
    • 63 Vincent G. Optical properties of porous silicon superlattices. Appl. Phys. Lett. 64, 2367–2369 (1994).
    • 64 Jalkanen T, Tuura J, Mäkilä E, Salonen J. Electro-optical porous silicon gas sensor with enhanced selectivity. Sensor Actuat. B-Chem. 147, 100–104 (2010).
    • 65 Salonen J, Lehto VP, Laine E. The room temperature oxidation of porous silicon. Appl. Surf. Sci. 120, 191–198 (1997).
    • 66 Secret E, Smith K, Dubljevic V et al. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Healthcare Mater. 2, 718–727 (2013).
    • 67 Wu EC, Andrew JS, Buyanin A et al. Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics. Chem. Comm. 47, 5699–5701 (2011).
    • 68 Riikonen J, Salomäki M, van Wonderen J et al. Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Langmuir 28, 10573–10583 (2012).
    • 69 Salonen J, Lehto VP, Björkqvist M et al. Studies of thermally-carbonized porous silicon surfaces. Phys. Status Solidi A 182, 123–126 (2000).
    • 70 Salonen J, Björkqvist M, Laine E, Niinistö L. Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl. Surf. Sci. 225, 389–394 (2004).
    • 71 Björkqvist M, Salonen J, Laine E, Niinistö L. Comparison of stabilizing treatments on porous silicon for sensor applications. Phys. Status Solidi A 197, 374–377 (2003).
    • 72 Jarvis KL, Barnes TJ, Prestidge CA. Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv. Colloid Inter. Sci. 175, 25–38 (2012).
    • 73 Pap AE, Kordás K, George TF, Leppävuori S. Thermal oxidation of porous silicon: study on reaction kinetics. J. Phys. Chem. B 108, 12744–12747 (2004).
    • 74 Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH. Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. Langmuir 27, 9497–9503 (2011).
    • 75 Mann AP, Tanaka T, Somasunderam A et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv. Mater. 23, H278–H282 (2011).
    • 76 Serda RE, Mack A, Pulikkathara M et al. Cellular association and assembly of a multistage delivery system. Small 6, 1329–1340 (2010).
    • 77 Park JS, Kinsella JM, Jandial DD et al. Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small 7, 2061–2069 (2011).
    • 78 Mawhinney DB, Glass JA, Yates JT. FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101, 1202–1206 (1997).
    • 79 Jarvis KL, Barnes TJ, Prestidge CA. Thermal oxidation for controlling protein interactions with porous silicon. Langmuir 26, 14316–14322 (2010).
    • 80 Buriak JM, Stewart MP, Geders TW et al. Lewis acid mediated hydrosilylation on porous silicon surfaces. J. Am. Chem. Soc. 121, 11491–11502 (1999).
    • 81 Huck LA, Buriak JM. Toward a mechanistic understanding of exciton-mediated hydrosilylation on nanocrystalline silicon. J. Am. Chem. Soc. 134, 489–497 (2012).
    • 82 Guan B, Ciampi S, Le Saux G et al. Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using ‘click’ chemistry. Langmuir 27, 328–334 (2010).
    • 83 Guan B, Ciampi S, Luais E et al. Depth-resolved chemical modification of porous silicon by wavelength-tuned irradiation. Langmuir 28, 15444–15449 (2012).
    • 84 Buriak JM. Silicon-carbon bonds on porous silicon surfaces. Adv. Mater. 11, 265–267 (1999).
    • 85 Sam S, Touahir L, Salvador AJ et al. Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 26, 809–814 (2010).
    • 86 Ciampi S, Guan B, Darwish N et al. Redox-active monolayers in mesoporous silicon. J. Phys. Chem. C 116, 16080–16088 (2012).
    • 87 Lees IN, Lin H, Canaria CA et al. Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 19, 9812–9817 (2003).
    • 88 Wu EC, Park J-H, Park J et al. Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2, 2401–2409 (2008).
    • 89 Sciacca B, Alvarez SD, Geobaldo F, Sailor MJ. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction. Dalton Trans. 39, 10847–10853 (2010).
    • 90 Jalkanen T, Mäkilä E, Suzuki YI et al. Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions. Adv. Funct. Mater. 22, 3890–3898 (2012).
    • 91 Sarparanta M, Mäkilä E, Heikkilä T et al. 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol. Pharmaceutics 8, 1799–1806 (2011).
    • 92 Canham LT. Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033–1037 (1995).•• One of the key articles with regards to manufacture, modifications, and biocompatibility of porous silicon materials.
    • 93 Foraker AB, Walczak RJ, Cohen MH et al. Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm. Res. 20, 110–116 (2003).
    • 94 Schwartz MP, Yu C, Alvarez SD et al. Using an oxidized porous silicon interferometer for determination of relative protein binding affinity through non-covalent capture probe immobilization. Phys. Status Solidi A 204, 1444–1448 (2007).
    • 95 Pastor E, Matveeva E, Valle-Gallego A et al. Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles. Colloid Surf. B 88, 601–609 (2011).
    • 96 Anderson SHC, Elliott H, Wallis DJ et al. Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys. Status Solidi A 197, 331–335 (2003).
    • 97 Sam S, Chazalviel JN, Gouget-Laemmel AC et al. Covalent immobilization of amino acids on the porous silicon surface. Surf. Inter. Anal. 42, 515–518 (2010).
    • 98 Limnell T, Riikonen J, Salonen J et al. Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles. Int. J. Pharm. 343, 141–147 (2007).
    • 99 Hu CM, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1, 323–334 (2010).
    • 100 Zhang H, Wang G, Yang H. Drug delivery systems for differential release in combination therapy. Expert Opin. Drug Deliv. 8, 171–190 (2011).
    • 101 Laaksonen T, Santos H, Vihola H et al. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20, 1913–1918 (2007).
    • 102 Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv. Drug Deliv. Rev. 62, 305–315 (2010).
    • 103 Canham L. Biomedical applications of porous silicon. In: Properties of Porous Silicon. Canham L (Ed.). INSPEC, London, UK, 416 (1997).
    • 104 Bimbo LM, Denisova OV, Mäkilä E et al. Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano 7, 6884–6893 (2013).
    • 105 Tanaka T, Mangala LS, Vivas-Mejia PE et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 70, 3687–3696 (2010).
    • 106 Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).
    • 107 Hong C, Lee J, Zheng H, Hong SS, Lee C. Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res. Lett. 6, 321 (2011).
    • 108 Hong C, Lee J, Son M, Hong SS, Lee C. In-vivo cancer cell destruction using porous silicon nanoparticles. Anticancer Drugs 22, 971–977 (2011).
    • 109 Godin B, Gu JH, Serda RE et al. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J. Biomed. Mater. Res. A 94A, 1236–1243 (2010).
    • 110 Huhtala T, Rytkönen J, Jalanko A et al. Native and complexed IGF-1: biodistribution and pharmacokinetics in infantile neuronal ceroid lipofuscinosis. J. Drug Deliv. 2012, 626417 (2012).
    • 111 Rytkönen J, Miettinen R, Kaasalainen M et al. Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes. J. Nanomater. 2012, (2012).
    • 112 Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn. 13, 257–269 (2013).
    • 113 Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4, 330–342 (2012).
    • 114 Cho K, Wang X, Nie S et al. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008).
    • 115 Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).•• Excellent review article summarizing the challenges and unmet needs for novel nanomaterials in cancer treatment.
    • 116 De Angelis F, Pujia A, Falcone C et al. Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context. Nanoscale 2, 2230–2236 (2010).