We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces

    Sandrine Lavenus

    * Author for correspondence

    Rensselaer Polytechnic Institute, Nanotecnology Center, Troy, NY 12180-3590, USA.

    ,
    Valérie Trichet

    Inserm U957, Laboratory Physiopathology of Bone Resorption, Faculty of Medicine, University of Nantes, France

    ,
    Sébastien Le Chevalier

    CNRS, Institut des Matériaux Jean Rouxel (IMN), University of Nantes, Nantes, France

    ,
    Alain Hoornaert

    ERT 2004, Faculty of Dental Surgery, University of Nantes, Nantes, France

    ,
    Guy Louarn

    CNRS, Institut des Matériaux Jean Rouxel (IMN), University of Nantes, Nantes, France

    &
    Pierre Layrolle

    Inserm U957, Laboratory Physiopathology of Bone Resorption, Faculty of Medicine, University of Nantes, France

    Published Online:https://doi.org/10.2217/nnm.11.181

    Aims: We aimed to study the interactions between human mesenchymal stem cells and the bone integration of nanostructured titanium implants. Materials & methods: Nanopores of 20, 30 and 50 nm were prepared by anodization of titanium at 5, 10 and 20 V in a mixture of fluorhydric and acetic acid. Ti 30 and 50 nanostructures promoted early osteoblastic gene differentiation of the human mesenchymal stem cells without osteogenic supplements. The osseointegration of nanostructured and control titanium implants was compared by implantation in rat tibias for 1 and 3 weeks. Results: The nanostructures significantly accelerated bone apposition and bone bonding strength in vivo in correlation with in vitro results. Conclusion: These findings demonstrate that specific nanostructures controlled the differentiation of cells and, thus, the integration of implants in tissues. These nanoporous titanium surfaces may be of considerable interest for dental and orthopedic implants.

    Original submitted 10 September 2011; Revised submitted 11 November 2011; Published online 6 March 2012

    References

    • Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater.23(7),844–854 (2007).Crossref, Medline, CASGoogle Scholar
    • Davies JE. Understanding peri-implant endosseous healing. J. Dent. Educ.67(8),932–949 (2003).Crossref, MedlineGoogle Scholar
    • Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron36(7–8),630–644 (2005).Crossref, Medline, CASGoogle Scholar
    • Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf. B Biointerfaces49(2),136–144 (2006).Crossref, Medline, CASGoogle Scholar
    • Protivínský J, Appleford M, Strnad J, Helebrant A, Ong JL. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Int. J. Oral Maxillofac. Implants22(4),542–550 (2007).MedlineGoogle Scholar
    • Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials28(18),2821–2829 (2007).Crossref, Medline, CASGoogle Scholar
    • Yang Y, Tian J, Deng L, Ong JL. Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro. Biomaterials23(5),1383–1389 (2002).Crossref, Medline, CASGoogle Scholar
    • Le Guehennec L. Osteoblastic cell behavior on nanostructured metal implants. Nanomedicine (Lond).3(1),61–71 (2008).Link, CASGoogle Scholar
    • Dalby MJ, Gadegaard N, Curtis ASG, Oreffo ROC. Nanotopographical control of human osteoprogenitor differentiation. Curr. Stem Cell Res. Ther.2(2),129–138 (2007).Crossref, Medline, CASGoogle Scholar
    • 10  Dalby MJ, Gadegaard N, Tare R et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater.6(12),997–1003 (2007).Crossref, Medline, CASGoogle Scholar
    • 11  Dalby MJ, McCloy, Robertson M, Wilkinson CDW, Oreffo RO. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials27(8),1306–1315 (2006).Crossref, Medline, CASGoogle Scholar
    • 12  Caplan AI. Why are MSCs therapeutic? New data: new insight. J. Pathol.217(2),318–324 (2009).Crossref, Medline, CASGoogle Scholar
    • 13  Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem.98(5),1076–1084 (2006).Crossref, Medline, CASGoogle Scholar
    • 14  Kassem M. Stem cells: potential therapy for age-related diseases. Ann. NY Acad. Sci.1067,436–442 (2006).Crossref, Medline, CASGoogle Scholar
    • 15  Marinucci L, Balloni S, Becchetti E et al. Effects of hydroxyapatite and Biostite on osteogenic induction of hMSC. Ann. Biomed. Eng.38(3),640–648 (2010).Crossref, MedlineGoogle Scholar
    • 16  Lepski G, Jannes CE, Maciaczyk J et al. Limited Ca2+ and PKA-pathway dependent neurogenic differentiation of human adult mesenchymal stem cells as compared with fetal neuronal stem cells. Exp. Cell Res.316(2),216–231 (2010).Crossref, Medline, CASGoogle Scholar
    • 17  Morganstein DL, Wu P, Mane MR, Fisk NM, White R, Parker MG. Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: a role for ERRα in human UCP1 expression. Cell Res.20(4),434–444 (2010).Crossref, Medline, CASGoogle Scholar
    • 18  Zannettino ACW, Paton S, Arthur A et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J. Cell. Physiol.214(2),413–421 (2008).Crossref, Medline, CASGoogle Scholar
    • 19  Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell126(4),677–689 (2006).Crossref, Medline, CASGoogle Scholar
    • 20  Oh S, Brammer KS, Li YSJ et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl Acad. Sci. USA106(7),2130–2135 (2009).Crossref, Medline, CASGoogle Scholar
    • 21  Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett.7(6),1686–1691 (2007).Crossref, Medline, CASGoogle Scholar
    • 22  Sul YT. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Int. J. Nanomedicine5,87–100 (2010).Crossref, Medline, CASGoogle Scholar
    • 23  Sul YT, Johansson CB, Jeong Y, Röser K, Wennerberg A, Albrektsson T. Oxidized implants and their influence on the bone response. J. Mater. Sci. Mater. Med.12(10–12),1025–1031 (2001).Crossref, Medline, CASGoogle Scholar
    • 24  Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res. A92(3),1218–1224 (2010).MedlineGoogle Scholar
    • 25  Le Guehennec L, Marco-Antonio, Benedicte, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater.4(3),535–543 (2008).Crossref, Medline, CASGoogle Scholar
    • 26  Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA107(11),4872–4877 (2010).Crossref, Medline, CASGoogle Scholar
    • 27  Itano N, Okamoto S, Zhang D, Lipton SA, Ruoslahti E. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl Acad. Sci. USA.100(9),5181–5186 (2003).Crossref, Medline, CASGoogle Scholar
    • 28  McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell6(4),483–495 (2004).Crossref, Medline, CASGoogle Scholar
    • 29  Keene DR, Sakai LY, Burgeson RE. Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J. Histochem. Cytochem.39(1),59–69 (1991).Crossref, Medline, CASGoogle Scholar
    • 30  Hong D, Chen HX, Yu HQ et al. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp. Cell Res.316(14),2291–2300 (2010).Crossref, Medline, CASGoogle Scholar
    • 31  Liu X, Wu H, Byrne M, Krane S, Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl Acad. Sci. USA94(5),1852–1856 (1997).Crossref, Medline, CASGoogle Scholar
    • 32  Kadler KE, Hojima Y, Prockop DJ. Collagen fibrils in vitro grow from pointed tips in the C- to N-terminal direction. Biochem. J.268(2),339–343 (1990).Crossref, Medline, CASGoogle Scholar
    • 33  Chiquet M, Mumenthaler U, Wittwer M, Jin W, Koch M. The chick and human collagen α1(XII) gene promoter – activity of highly conserved regions around the first exon and in the first intron. Eur. J. Biochem.257(2),362–371 (1998).Crossref, Medline, CASGoogle Scholar
    • 34  Singh SP, Chang EI, Gossain AK et al. Cyclic mechanical strain increases production of regulators of bone healing in cultured murine osteoblasts. J. Am. Coll. Surg.204(3),426–434 (2007).Crossref, MedlineGoogle Scholar
    • 35  Lindahl GE, Chambers RC, Papakrivopoulou J et al. Activation of fibroblast procollagen α1(I) transcription by mechanical strain is transforming growth factor-β-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J. Biol. Chem.277(8),6153–6161 (2002).Crossref, Medline, CASGoogle Scholar
    • 36  Arai K, Nagashima Y, Takemoto T, Nishiyama T. Mechanical strain increases expression of type XII collagen in murine osteoblastic MC3T3-E1 cells. Cell Struct. Funct.33(2),203–210 (2008).Crossref, Medline, CASGoogle Scholar
    • 37  Tanaka Y, Morimoto I, Nakano Y et al. Osteoblasts are regulated by the cellular adhesion through ICAM-1 and VCAM-1. J. Bone Miner. Res.10(10),1462–1469 (1995).Crossref, Medline, CASGoogle Scholar
    • 38  Di Cesare PE, Fang C, Leslie MP, Tulli H, Perris R, Carlson CS. Expression of cartilage oligomeric matrix protein (COMP) by embryonic and adult osteoblasts. J. Orthop. Res.18(5),713–720 (2000).Crossref, Medline, CASGoogle Scholar
    • 39  DiCesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett.354(2),237–240 (1994).Crossref, Medline, CASGoogle Scholar
    • 40  Halász K, Kassner A, Mörgelin M, Heinegård D. COMP acts as a catalyst in collagen fibrillogenesis. J. Biol. Chem.282(43),31166–31173 (2007).Crossref, Medline, CASGoogle Scholar
    • 41  Briggs MD, Hoffman SM, King LM et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat. Genet.10(3),330–336 (1995).Crossref, Medline, CASGoogle Scholar
    • 42  Rosenberg K, Olsson H, Mörgelin M, Heinegård D. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J. Biol. Chem.273(32),20397–20403 (1998).Crossref, Medline, CASGoogle Scholar
    • 43  von Wilmowsky C, Bauer S, Lutz R et al.In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J. Biomed. Mater. Res. Part B Appl. Biomater.89(1),165–171 (2009).Crossref, MedlineGoogle Scholar
    • 44  Bigerelle M, Anselme K, Noël B, Ruderman I, Hardouin P, Iost A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials23(7),1563–1577 (2002).Crossref, Medline, CASGoogle Scholar
    • 45  Buser D, Nydegger T, Oxland T et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J. Biomed. Mater. Res.45(2),75–83 (1999).Crossref, Medline, CASGoogle Scholar
    • 101  Tebu-bio. www.tebubio.comGoogle Scholar