Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces
Abstract
Aims: We aimed to study the interactions between human mesenchymal stem cells and the bone integration of nanostructured titanium implants. Materials & methods: Nanopores of 20, 30 and 50 nm were prepared by anodization of titanium at 5, 10 and 20 V in a mixture of fluorhydric and acetic acid. Ti 30 and 50 nanostructures promoted early osteoblastic gene differentiation of the human mesenchymal stem cells without osteogenic supplements. The osseointegration of nanostructured and control titanium implants was compared by implantation in rat tibias for 1 and 3 weeks. Results: The nanostructures significantly accelerated bone apposition and bone bonding strength in vivo in correlation with in vitro results. Conclusion: These findings demonstrate that specific nanostructures controlled the differentiation of cells and, thus, the integration of implants in tissues. These nanoporous titanium surfaces may be of considerable interest for dental and orthopedic implants.
Original submitted 10 September 2011; Revised submitted 11 November 2011; Published online 6 March 2012
References
- 1 Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater.23(7),844–854 (2007).Crossref, Medline, CAS, Google Scholar
- 2 Davies JE. Understanding peri-implant endosseous healing. J. Dent. Educ.67(8),932–949 (2003).Crossref, Medline, Google Scholar
- 3 Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron36(7–8),630–644 (2005).Crossref, Medline, CAS, Google Scholar
- 4 Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf. B Biointerfaces49(2),136–144 (2006).Crossref, Medline, CAS, Google Scholar
- 5 Protivínský J, Appleford M, Strnad J, Helebrant A, Ong JL. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Int. J. Oral Maxillofac. Implants22(4),542–550 (2007).Medline, Google Scholar
- 6 Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials28(18),2821–2829 (2007).Crossref, Medline, CAS, Google Scholar
- 7 Yang Y, Tian J, Deng L, Ong JL. Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro. Biomaterials23(5),1383–1389 (2002).Crossref, Medline, CAS, Google Scholar
- 8 Le Guehennec L. Osteoblastic cell behavior on nanostructured metal implants. Nanomedicine (Lond).3(1),61–71 (2008).Link, CAS, Google Scholar
- 9 Dalby MJ, Gadegaard N, Curtis ASG, Oreffo ROC. Nanotopographical control of human osteoprogenitor differentiation. Curr. Stem Cell Res. Ther.2(2),129–138 (2007).Crossref, Medline, CAS, Google Scholar
- 10 Dalby MJ, Gadegaard N, Tare R et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater.6(12),997–1003 (2007).Crossref, Medline, CAS, Google Scholar
- 11 Dalby MJ, McCloy, Robertson M, Wilkinson CDW, Oreffo RO. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials27(8),1306–1315 (2006).Crossref, Medline, CAS, Google Scholar
- 12 Caplan AI. Why are MSCs therapeutic? New data: new insight. J. Pathol.217(2),318–324 (2009).Crossref, Medline, CAS, Google Scholar
- 13 Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem.98(5),1076–1084 (2006).Crossref, Medline, CAS, Google Scholar
- 14 Kassem M. Stem cells: potential therapy for age-related diseases. Ann. NY Acad. Sci.1067,436–442 (2006).Crossref, Medline, CAS, Google Scholar
- 15 Marinucci L, Balloni S, Becchetti E et al. Effects of hydroxyapatite and Biostite on osteogenic induction of hMSC. Ann. Biomed. Eng.38(3),640–648 (2010).Crossref, Medline, Google Scholar
- 16 Lepski G, Jannes CE, Maciaczyk J et al. Limited Ca2+ and PKA-pathway dependent neurogenic differentiation of human adult mesenchymal stem cells as compared with fetal neuronal stem cells. Exp. Cell Res.316(2),216–231 (2010).Crossref, Medline, CAS, Google Scholar
- 17 Morganstein DL, Wu P, Mane MR, Fisk NM, White R, Parker MG. Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: a role for ERRα in human UCP1 expression. Cell Res.20(4),434–444 (2010).Crossref, Medline, CAS, Google Scholar
- 18 Zannettino ACW, Paton S, Arthur A et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J. Cell. Physiol.214(2),413–421 (2008).Crossref, Medline, CAS, Google Scholar
- 19 Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell126(4),677–689 (2006).Crossref, Medline, CAS, Google Scholar
- 20 Oh S, Brammer KS, Li YSJ et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl Acad. Sci. USA106(7),2130–2135 (2009).Crossref, Medline, CAS, Google Scholar
- 21 Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett.7(6),1686–1691 (2007).Crossref, Medline, CAS, Google Scholar
- 22 Sul YT. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Int. J. Nanomedicine5,87–100 (2010).Crossref, Medline, CAS, Google Scholar
- 23 Sul YT, Johansson CB, Jeong Y, Röser K, Wennerberg A, Albrektsson T. Oxidized implants and their influence on the bone response. J. Mater. Sci. Mater. Med.12(10–12),1025–1031 (2001).Crossref, Medline, CAS, Google Scholar
- 24 Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res. A92(3),1218–1224 (2010).Medline, Google Scholar
- 25 Le Guehennec L, Marco-Antonio, Benedicte, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater.4(3),535–543 (2008).Crossref, Medline, CAS, Google Scholar
- 26 Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA107(11),4872–4877 (2010).Crossref, Medline, CAS, Google Scholar
- 27 Itano N, Okamoto S, Zhang D, Lipton SA, Ruoslahti E. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl Acad. Sci. USA.100(9),5181–5186 (2003).Crossref, Medline, CAS, Google Scholar
- 28 McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell6(4),483–495 (2004).Crossref, Medline, CAS, Google Scholar
- 29 Keene DR, Sakai LY, Burgeson RE. Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J. Histochem. Cytochem.39(1),59–69 (1991).Crossref, Medline, CAS, Google Scholar
- 30 Hong D, Chen HX, Yu HQ et al. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp. Cell Res.316(14),2291–2300 (2010).Crossref, Medline, CAS, Google Scholar
- 31 Liu X, Wu H, Byrne M, Krane S, Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl Acad. Sci. USA94(5),1852–1856 (1997).Crossref, Medline, CAS, Google Scholar
- 32 Kadler KE, Hojima Y, Prockop DJ. Collagen fibrils in vitro grow from pointed tips in the C- to N-terminal direction. Biochem. J.268(2),339–343 (1990).Crossref, Medline, CAS, Google Scholar
- 33 Chiquet M, Mumenthaler U, Wittwer M, Jin W, Koch M. The chick and human collagen α1(XII) gene promoter – activity of highly conserved regions around the first exon and in the first intron. Eur. J. Biochem.257(2),362–371 (1998).Crossref, Medline, CAS, Google Scholar
- 34 Singh SP, Chang EI, Gossain AK et al. Cyclic mechanical strain increases production of regulators of bone healing in cultured murine osteoblasts. J. Am. Coll. Surg.204(3),426–434 (2007).Crossref, Medline, Google Scholar
- 35 Lindahl GE, Chambers RC, Papakrivopoulou J et al. Activation of fibroblast procollagen α1(I) transcription by mechanical strain is transforming growth factor-β-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J. Biol. Chem.277(8),6153–6161 (2002).Crossref, Medline, CAS, Google Scholar
- 36 Arai K, Nagashima Y, Takemoto T, Nishiyama T. Mechanical strain increases expression of type XII collagen in murine osteoblastic MC3T3-E1 cells. Cell Struct. Funct.33(2),203–210 (2008).Crossref, Medline, CAS, Google Scholar
- 37 Tanaka Y, Morimoto I, Nakano Y et al. Osteoblasts are regulated by the cellular adhesion through ICAM-1 and VCAM-1. J. Bone Miner. Res.10(10),1462–1469 (1995).Crossref, Medline, CAS, Google Scholar
- 38 Di Cesare PE, Fang C, Leslie MP, Tulli H, Perris R, Carlson CS. Expression of cartilage oligomeric matrix protein (COMP) by embryonic and adult osteoblasts. J. Orthop. Res.18(5),713–720 (2000).Crossref, Medline, CAS, Google Scholar
- 39 DiCesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett.354(2),237–240 (1994).Crossref, Medline, CAS, Google Scholar
- 40 Halász K, Kassner A, Mörgelin M, Heinegård D. COMP acts as a catalyst in collagen fibrillogenesis. J. Biol. Chem.282(43),31166–31173 (2007).Crossref, Medline, CAS, Google Scholar
- 41 Briggs MD, Hoffman SM, King LM et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat. Genet.10(3),330–336 (1995).Crossref, Medline, CAS, Google Scholar
- 42 Rosenberg K, Olsson H, Mörgelin M, Heinegård D. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J. Biol. Chem.273(32),20397–20403 (1998).Crossref, Medline, CAS, Google Scholar
- 43 von Wilmowsky C, Bauer S, Lutz R et al.In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J. Biomed. Mater. Res. Part B Appl. Biomater.89(1),165–171 (2009).Crossref, Medline, Google Scholar
- 44 Bigerelle M, Anselme K, Noël B, Ruderman I, Hardouin P, Iost A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials23(7),1563–1577 (2002).Crossref, Medline, CAS, Google Scholar
- 45 Buser D, Nydegger T, Oxland T et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J. Biomed. Mater. Res.45(2),75–83 (1999).Crossref, Medline, CAS, Google Scholar
- 101 Tebu-bio. www.tebubio.comGoogle Scholar

