We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Microfluidic generation of diverse lipid nanoparticle libraries

    Andrew R Hanna

    Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

    ,
    Sarah J Shepherd

    Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

    ,
    David Issadore

    *Author for correspondence:

    E-mail Address: issadore@seas.upenn.edu

    Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

    &
    Michael J Mitchell

    **Author for correspondence:

    E-mail Address: mjmitch@seas.upenn.edu

    Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

    Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

    Published Online:https://doi.org/10.2217/nnm-2023-0345
    Free first page

    References

    • 1. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6(12), 1078–1094 (2021).
    • 2. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15(4), 313–320 (2020).
    • 3. Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20(3), 1578–1589 (2020).
    • 4. Han X, Zhang H, Butowska K et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12(1), 7233 (2021).
    • 5. Kulkarni JA, Darjuan MM, Mercer JE et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano. 12(5), 4787–4795 (2018).
    • 6. Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7(10), 623–629 (2012).
    • 7. Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 274, 120826 (2021).
    • 8. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002).
    • 9. Shepherd SJ, Han X, Mukalel AJ et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc. Natl Acad. Sci. 120(33), e2303567120 (2023).
    • 10. Gindy ME, DiFelice K, Kumar V et al. Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Langmuir 30(16), 4613–4622 (2014).
    • 11. O'Brien Laramy MN, Costa AP, Cebrero YM et al. Process robustness in lipid nanoparticle production: a comparison of microfluidic and turbulent jet mixing. Mol. Pharm. 20(8), 4285–4296 (2023).
    • 12. Dahlman JE, Kauffman KJ, Xing Y et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. 114(8), 2060–2065 (2017).
    • 13. Leung AKK, Hafez IM, Baoukina S et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C. 116(34), 18440–18450 (2012).
    • 14. Reker D, Rybakova Y, Kirtane AR et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16(6), 725–733 (2021).
    • 15. Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. Efficient polymer-mediated delivery of gene-editing ribonucleoprotein payloads through combinatorial design, parallelized experimentation, and machine learning. ACS Nano 14(12), 17626–17639 (2020).
    • 16. Sunscreen - LNP Formulation Screening. Unchained Labs (2023). Available from: www.unchainedlabs.com/sunscreen/ (Accessed 13 November 2023).
    • 17. Götz J, Jackl MK, Jindakun C et al. High-throughput synthesis provides data for predicting molecular properties and reaction success. Sci. Adv. 9(43), eadj2314 (2023).
    • 18. Rhym LH, Manan RS, Koller A, Stephanie G, Anderson DG. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7(7), 901–910 (2023).
    • 19. Kimura N, Maeki M, Sato Y et al. Development of a microfluidic-based post-treatment process for size-controlled lipid nanoparticles and application to siRNA delivery. ACS Appl. Mater. Interfaces 12(30), 34011–34020 (2020).
    • 20. Cruz-Samperio R, Hicks CL, Scott A et al. Modular bioorthogonal lipid nanoparticle modification platforms for cardiac homing. J. Am. Chem. Soc. 145(41), 22659–22670 (2023).