We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

pH-sensitive docetaxel-loaded chitosan/thiolated hyaluronic acid polymeric nanoparticles for colorectal cancer

    Sobia Noreen

    Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan

    Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria

    ,
    Fahad Pervaiz

    *Author for correspondence:

    E-mail Address: fahad.pervaiz@iub.edu.pk

    Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan

    ,
    Muhammad Ijaz

    Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria

    COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan

    ,
    Muhammad Farhan Hanif

    Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan

    ,
    Jam Riyan Hamza

    Department of Chemistry & Biochemistry, University of Minnesota Duluth, MN 55812, USA

    ,
    Hassan Mahmood

    COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan

    ,
    Hina Shoukat

    Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan

    ,
    Irsah Maqbool

    Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan

    &
    Muhammad Azeem Ashraf

    University of Management & Technology Lahore, Punjab, 54770, Pakistan

    Published Online:https://doi.org/10.2217/nnm-2023-0318

    Aim: This study aimed to develop and evaluate pH-sensitive docetaxel-loaded thiolated hyaluronic acid (HA-SH) nanoparticles (NPs) for targeted treatment of colon cancer. Materials & methods: HA-SH, synthesized via oxidation and subsequent covalent linkage to cysteamine, served as the precursor for developing HA-SH NPs through polyelectrolyte complexation involving chitosan and thiol-bearing HA. Results & conclusion: HA-SH NPs displayed favorable characteristics, with small particle sizes (184–270 nm), positive zeta potential (15.4–18.6 mV) and high entrapment efficiency (91.66–95.02%). In vitro, NPs demonstrated potent mucoadhesion and enhanced cytotoxicity compared with free docetaxel. In vivo assessments confirmed safety and biocompatibility, suggesting HA-SH NPs as promising pH-sensitive drug carriers with enhanced antitumor activity for colorectal cancer treatments.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Wathoni N, Nguyen AN, Rusdin A et al. Enteric-coated strategies in colorectal cancer nanoparticle drug delivery system. Drug Des. Devel. Ther. 14, 4387 (2020).
    • 2. Chiu HI, Ayub AD, Mat Yusuf SNA, Yahaya N, Abd Kadir E, Lim V. Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics 12(1), 38 (2020).
    • 3. Yu Y, Fan P, Li J, Wang S. Preparation of biocompatible manganese selenium-based nanoparticles with antioxidant and catalytic functions. Molecules 28(11), 4498 (2023).
    • 4. Maqbool I, Noreen S. A review of novel techniques for nanoparticles preparation. GDDDR 4(1), 41–50 (2019).
    • 5. Noreen S, Maqbool A, Maqbool I et al. Multifunctional mesoporous silica-based nanocomposites: synthesis and biomedical applications. Mater. Chem. Phys. 285, 126132 (2022).
    • 6. Pervaiz F, Saleem M, Ashames A et al. Development and ex-vivo skin permeation studies of finasteride–poly (lactic acid-co-glycolic acid) and minoxidil–chitosan nanoparticulate systems. J. Bioact. Compat. Polym. 35(2), 77–91 (2020).
    • 7. Kurakula M, Gorityala S, Moharir K. Recent trends in design and evaluation of chitosan-based colon targeted drug delivery systems: update 2020. J. Drug Deliv. Sci. Technol. 64, 102579 (2021).
    • 8. Noreen S, Ma J-X, Saeed M et al. Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis. Drug Deliv. Transl. Res. 1–18 (2022).
    • 9. Duggan S, Cummins W, O'Donovan O, Hughes H, Owens E. Thiolated polymers as mucoadhesive drug delivery systems. Eur. J. Pharm. Sci. 100, 64–78 (2017).
    • 10. Sobia N, Andreas B-S. Thiolated poly- and oligosaccharide-based hydrogels for tissue engineering and wound healing. Adv. Funct. Mater. 2310129 (2023). https://doi.org/10.1002/adfm.202310129 •• Similar mechanisms and drug-release justification for thiolated drug-delivery system as the current study.
    • 11. Shahzadi I, Fürst A, Akkus-Dagdeviren ZB et al. Less reactive thiol ligands: key towards highly mucoadhesive drug delivery systems. Polymers 12(6), 1259 (2020).
    • 12. Alotaibi BS, Buabeid M, Ibrahim NA et al. Potential of nanocarrier-based drug delivery systems for brain targeting: a current review of literature. Int. J. Nanomed. 16, 7517 (2021).
    • 13. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol. 14(1), 1–27 (2021).
    • 14. Kesharwani P, Chadar R, Sheikh A, Rizg WY, Safhi AY. CD44-targeted nanocarrier for cancer therapy. Front. Pharmacol. 12, 800481 (2022).
    • 15. Noreen S, Pervaiz F, Ijaz M, Shoukat H. Synthesis and characterization of pH-sensitive chemically crosslinked block copolymer [hyaluronic acid/poloxamer 407-co-poly (methacrylic acid)] hydrogels for colon targeting. POLYM-PLAST TECH MAT 1–17 (2022).
    • 16. Maqbool I, Akhtar M, Ahmad R et al. Novel multiparticulate pH triggered delayed release chronotherapeutic drug delivery of celecoxib-β-cyclodextrin inclusion complexes by using Box–Behnken design. Eur. J. Pharm. Sci. 146, 105254 (2020). •• Similar design for Eudragit S-coated drug-delivery system as the current study.
    • 17. Lee SH, Bajracharya R, Min JY, Han J-W, Park BJ, Han H-K. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics 12(1), 68 (2020).
    • 18. Chiu HI, Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int. J. Nanomed. 16, 2995 (2021).
    • 19. Ibrahim MA, Shazly GA, Aleanizy FS, Alqahtani FY, Elosaily GM. Formulation and evaluation of docetaxel nanosuspensions: in-vitro evaluation and cytotoxicity. SPJ 27(1), 49–55 (2019).
    • 20. Ijaz M, Griessinger JA, Mahmood A, Laffleur F, Bernkop-Schnürch A. Thiolated cyclodextrin: development of a mucoadhesive vaginal delivery system for acyclovir. J. Pharm. Sci. 105(5), 1714–1720 (2016). • Similar design for conjugation as the current study.
    • 21. Ijaz M, Matuszczak B, Rahmat D et al. Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydr. Polym. 132, 187–195 (2015).
    • 22. Noreen S, Pervaiz F, Ashames A et al. Optimization of novel naproxen-loaded chitosan/carrageenan nanocarrier-based gel for topical delivery: ex vivo, histopathological, and in vivo evaluation. Pharmaceuticals 14(6), 557 (2021).
    • 23. Sakulwech S, Lourith N, Ruktanonchai U, Kanlayavattanakul M. Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J. Pharm. Sci. 13(5), 498–504 (2018).
    • 24. Sladek S, McCartney F, Eskander M et al. An enteric-coated polyelectrolyte nanocomplex delivers insulin in rat intestinal instillations when combined with a permeation enhancer. Pharmaceutics 12(3), 259 (2020).
    • 25. Sajjad M, Khan MI, Naveed S et al. Folate-functionalized thiomeric nanoparticles for enhanced docetaxel cytotoxicity and improved oral bioavailability. AAPS PharmSciTech 20(2), 81 (2019).
    • 26. Suchaoin W, Bonengel S, Hussain S, Huck CW, Ma BN, Bernkop-Schnürch A. Synthesis and in vitro evaluation of thiolated carrageenan. J. Pharm. Sci. 104(8), 2523–2530 (2015).
    • 27. Iqbal J, Sarti F, Perera G, Bernkop-Schnürch A. Development and in vivo evaluation of an oral drug delivery system for paclitaxel. Biomaterials 32(1), 170–175 (2011).
    • 28. Suchaoin W, Bonengel S, Grießinger JA et al. Novel bioadhesive polymers as intra-articular agents: chondroitin sulfate-cysteine conjugates. Eur. J. Pharm. Biopharm. 101, 25–32 (2016).
    • 29. Asim MH, Silberhumer S, Shahzadi I, Jalil A, Matuszczak B, Bernkop-Schnürch A. S-protected thiolated hyaluronic acid: in-situ crosslinking hydrogels for 3D cell culture scaffold. Carbohydr. Polym. 237, 116092 (2020).
    • 30. Maria S, Sarwar HS, Sohail MF et al. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide. J. Drug Deliv. Sci. Technol. 101807, 58 (2020).
    • 31. Sinha P, Udhumansha U, Rathnam G, Ganesh M, Jang HT. Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: in vitro evaluation. Int. J. Biol. Macromol. 117, 840–850 (2018).
    • 32. Rosengren A, Faxius L, Tanaka N, Watanabe M, Bjursten LM. Comparison of implantation and cytotoxicity testing for initially toxic biomaterials. J. Biomed. Mater. Res. A 75(1), 115–122 (2005).
    • 33. Valenta C, Auner BG. The use of polymers for dermal and transdermal delivery. Eur. J. Pharm. Biopharm. 58(2), 279–289 (2004).
    • 34. Aldawsari HM, Singh S, Alhakamy NA et al. Adenosine conjugated docetaxel nanoparticles – proof of concept studies for non-small cell lung cancer. Pharmaceuticals 15(5), 544 (2022).
    • 35. Hua SJFIP. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 11, 524 (2020).
    • 36. Subudhi MB, Jain A, Jain A et al. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-fluorouracil. Materials 8(3), 832–849 (2015).
    • 37. Alsarra IA, Yassin AEB, Alanazi FK, Aljuffali IA, Abdel-Hamid M. Direct UPLC-MS-MS validated method for the quantification of 5-aminolevulinic acid: application to in-vitro assessment of colonic-targeted oral tablets. J. Chromatogr. Sci. 49(6), 428–433 (2011).
    • 38. Bugata LSP, Pitta Venkata P, Gundu AR et al. Acute and subacute oral toxicity of copper oxide nanoparticles in female albino Wistar rats. J. Appl. Toxicol. 39(5), 702–716 (2019).
    • 39. Mahmood S, Buabeid MA, Ullah K, Murtaza G, Mannan A, Khan SA. Synthesis, characterization and safety profiling of Eudragit-based pH-responsive hydrogels: a promising platform for colonic delivery of losartan potassium. Curr. Drug Deliv. 16(6), 548–564 (2019).
    • 40. Kafedjiiski K, Jetti RK, Föger F et al. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. Int. J. Pharm. 343(1–2), 48–58 (2007).
    • 41. Kotla NG, Bonam SR, Rasala S et al. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. JCR 336, 598–620 (2021).
    • 42. Xia D, Wang F, Pan S, Yuan S, Liu Y, Xu YJP. Redox/pH-responsive biodegradable thiol-hyaluronic acid/chitosan charge-reversal nanocarriers for triggered drug release. Polymers 13(21), 3785 (2021).
    • 43. Bencherif SA, Washburn NR, Matyjaszewski KJB. Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel. Biomacromolecules 10(9), 2499–2507 (2009).
    • 44. Nyquist R, Potts W. Characteristic infrared absorption frequencies of thiol esters and related compounds. Spectrochim. Acta 15, 514–538 (1959).
    • 45. Li R. A Novel Thiolated Hyaluronic acid Hydrogel for Spinal Cord Injury Repair. (Doctoral dissertation, Université d'Ottawa/University of Ottawa). (2014).
    • 46. Chiesa E, Dorati R, Conti B et al. Hyaluronic acid-decorated chitosan nanoparticles for CD44-targeted delivery of everolimus. Int. J. Mol. Sci. 19(8), 2310 (2018).
    • 47. Umair M, Javed I, Rehman M et al. Nanotoxicity of inert materials: the case of gold, silver and iron. J. Pharm. Pharm. Sci. 19(2), 161–180 (2016).
    • 48. Alvi Z, Akhtar M, Rahman NU et al. Utilization of gelling polymer to formulate nanoparticles loaded with epalrestat-cyclodextrin inclusion complex: formulation, characterization, in-silico modelling and in-vivo toxicity evaluation. Polymers 13(24), 4350 (2021).
    • 49. Geethakumari D, Sathyabhama AB, Sathyan KR, Mohandas D, Somasekharan JV, Puthiyedathu ST. Folate functionalized chitosan nanoparticles as targeted delivery systems for improved anticancer efficiency of cytarabine in MCF-7 human breast cancer cell lines. Int. J. Biol. Macromol. 199, 150–161 (2022).
    • 50. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf. B 44(2), 65–73 (2005).
    • 51. Yang W, Fu J, Wang T, He N. Chitosan/sodium tripolyphosphate nanoparticles: preparation, characterization and application as drug carrier. J. Biomed. Nanotechnol. 5(5), 591–595 (2009).
    • 52. Shanmuga S, Singhal M, Sen S. Synthesis and characterization of carrageenan coated magnetic nanoparticles for drug delivery applications. Transl. Biomed. 6(3), 19 (2015).
    • 53. Kendall RA, Alhnan MA, Nilkumhang S, Murdan S, Basit AW. Fabrication and in vivo evaluation of highly pH-responsive acrylic microparticles for targeted gastrointestinal delivery. Eur. J. Pharm. Sci. 37(3–4), 284–290 (2009).
    • 54. Agarwal D, Ranawat MS, Chauhan CS, Kamble R. Formulation and chracterization of colon targeted pH dependent microspheres of capecitabine for colorectal cancer. J. Drug Deliv. Ther. 3(6), 215–222 (2013).
    • 55. Paharia A, Yadav AK, Rai G, Jain SK, Pancholi SS, Agrawal GP. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech 8(1), e87–e93 (2007).
    • 56. Sareen R, Jain N, Rajkumari A, Dhar KL. pH triggered delivery of curcumin from Eudragit-coated chitosan microspheres for inflammatory bowel disease: characterization and pharmacodynamic evaluation. Drug Deliv. 23(1), 55–62 (2016).
    • 57. Obeidat WM, Obeidat SM, Alzoubi NM. Investigations on the physical structure and the mechanism of drug release from an enteric matrix microspheres with a near-zero-order release kinetics using SEM and quantitative FTIR. AAPS PharmSciTech 10(2), 615–623 (2009).
    • 58. Rawat M, Saraf S, Saraf S. Influence of selected formulation variables on the preparation of enzyme-entrapped Eudragit S100 microspheres. AAPS PharmSciTech 8(4), 289–297 (2007).
    • 59. Zhang S, Guo N, Wan G et al. pH and redox dual-responsive nanoparticles based on disulfide-containing poly (β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J. Nanobiotechnol. 17(1), 1–17 (2019).
    • 60. Nowak J, Laffleur F, Bernkop-Schnürch A. Preactivated hyaluronic acid: a potential mucoadhesive polymer for vaginal delivery. Int. J. Pharm. 478(1), 383–389 (2015).
    • 61. Tsakalozou E, Eckman AM, Bae Y. Combination effects of docetaxel and doxorubicin in hormone-refractory prostate cancer cells. Biochem. Res. Int. 2012, 832059 (2012).
    • 62. Lee E, Kim H, Lee I-H, Jon S. In vivo antitumor effects of chitosan-conjugated docetaxel after oral administration. JCR 140(2), 79–85 (2009).
    • 63. Asnani GP, Kokare CR. In vitro and in vivo evaluation of colon cancer targeted epichlorohydrin crosslinked Portulaca-alginate beads. Biomol. Concepts 9(1), 190–199 (2018).
    • 64. Singh I, Swami R, Jeengar MK, Khan W, Sistla RJC, Lipids PO. p-Aminophenyl-α-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain. Chem. Phys. Lipids 188, 1–9 (2015).
    • 65. Wei H, Qing D, De-Ying C, Bai X, Fanli-Fang. Pectin/Ethylcellulose as film coatings for colon-specific drug delivery: preparation and in vitro evaluation using 5-fluorouracil pellets. PDA J. Pharm. Sci. Technol. 61(2), 121–130 (2007).
    • 66. Bohaumilitzky L, Huber A-K, Stork EM, Wengert S, Woelfl F, Boehm H. A trickster in disguise: hyaluronan's ambivalent roles in the matrix. Front. Oncol. 7, 242 (2017).
    • 67. Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: bioinspired polymers utilizing one of the most important bridging structures in nature. Adv. Drug Deliv. Rev. 151, 191–221 (2019).
    • 68. Muhammad M, Willems C, Rodríguez-Fernández J, Gallego-Ferrer G, Groth T. Synthesis and characterization of oxidized polysaccharides for in situ forming hydrogels. Biomolecules 10(8), 1185 (2020).
    • 69. Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Granular disulfide-crosslinked hyaluronic hydrogels: a systematic study of reaction conditions on thiol substitution and injectability parameters. Polymers 15(4), 966 (2023).
    • 70. Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated hyaluronic acid as versatile mucoadhesive polymer: from the chemistry behind to product developments – what are the capabilities? Polymers 10(3), 243 (2018).