We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Quality attributes of CTVad1, a nanoemulsified adjuvant for phase I clinical trial of SpiN COVID-19 vaccine

    Bruna Rodrigues Dias Assis‡

    Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Isabela Pereira Gomes‡

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Júlia Teixeira de Castro

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ,
    Graziella Gomes Rivelli

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ,
    Natália Salazar de Castro

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ,
    Diana Paola Gomez-Mendoza

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ,
    Flávia Fonseca Bagno

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ,
    Natália Satchiko Hojo-Souza

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil

    ,
    Ana Luiza Chaves Maia

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ,
    Eduardo Burgarelli Lages

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    ,
    Flávio Guimaraes da Fonseca

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil

    ,
    Santuza Maria Ribeiro Teixeira

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil

    ,
    Ana Paula Fernandes

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil

    ,
    Ricardo Tostes Gazzinelli

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil

    Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil

    &
    Gisele Assis Castro Goulart

    *Author for correspondence: Tel.: +55 313 499 6939;

    E-mail Address: gacg@ufmg.br

    Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil

    Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil

    Published Online:https://doi.org/10.2217/nnm-2023-0122

    Aim: To develop, characterize and evaluate an oil/water nanoemulsion with squalene (CTVad1) to be approved as an adjuvant for the SpiN COVID-19 vaccine clinical trials. Materials & methods: Critical process parameters (CPPs) of CTVad1 were standardized to meet the critical quality attributes (CQAs) of an adjuvant for human use. CTVad1 and the SpiN-CTVad1 vaccine were submitted to physicochemical, stability, in vitro and in vivo studies. Results & conclusion: All CQAs were met in the CTVad1 production process. SpiN- CTVad1 met CQAs and induced high levels of antibodies and specific cellular responses in in vivo studies. These results represented a critical step in the process developed to meet regulatory requirements for the SpiN COVID-19 vaccine clinical trial.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. World Health Organization. ‘Weekly epidemiological COVID-19 April 2023’ (2023). https://covid19.who.int/
    • 2. Cohen C, Kleynhans J, Von Gottberg A et al. SARS-COV-2 incidence, transmission, and reinfection in a rural and an urban setting: results of the PHIRST-C cohort study, South Africa, 2020-21. Lancet 22(6), 821–834 (2022).
    • 3. Steel K, Donnarumma H. Coronavirus (COVID-19) infection survey: UK: 26 February 2021 (2021). www.ons.gov.uk/
    • 4. Kong S. Real-time dashboard. Coronavirus disease 2019 (2019). https://covid19.sph.hku.hk/
    • 5. Tregoning JS, Flight KE, Higham SL et al. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21(10), 626–636 (2021).
    • 6. Watson OJ, Barnsley G, Toor J et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect. Dis. 22(9), 1293–1302 (2022).
    • 7. Azevedo PO, Hojo-Souza NS, Faustino LP et al. Differential requirement of neutralizing antibodies and T cells on protective immunity to SARS-COV-2 variants of concern. NPJ Vaccines 8(1), 1–17 (2023).
    • 8. Gazzinelli RT, Teixeira SMR, Fernandes APSM et al. Patent BR 10 2021 009573 3. Composição imunogênica contra SARS-COV2, vetores vacinais, proteína quimérica, processo de produção e usos (2021). www.somos.ufmg.br/departamento/departamento-de-bioquimica-e-imunologia
    • 9. Jia Z, Gong W. Will mutations in the spike protein of SARS-COV-2 lead to the failure of covid-19 vaccines? J. Korean Med. Sci. 36(18), 1–11 (2021).
    • 10. Li X, Xiong M, Deng Q et al. The utility of SARS-COV-2 nucleocapsid protein in laboratory diagnosis. J. Clin. Lab. Anal. 36(7), 24534–24546 (2022).
    • 11. Castro JT, Azevedo P, Fumagalli MJ et al. Promotion of neutralizing antibody-independent immunity to wild-type and SARS-COV-2 variants of concern using an RBD-nucleocapsid fusion protein. Nat. Commun. 13(1), 1–16 (2022). •• Details the immunogenic potential of recombinant SpiN protein tested poly-ICLC adjuvant.
    • 12. Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol. Lett. 203(2), 97–105 (2011).
    • 13. Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines. Mol. Pharm. 18(8), 2867–2888 (2021).
    • 14. Huang CH, Huang CY, Ho HM et al. Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. J. Immunother. Cancer 8(2), 1022–1033 (2020).
    • 15. Apostólico JDS, Lunardelli VAS, Coirada FC et al. Adjuvants: classification, modus operandi, and licensing. J. Immunol. Res 2016, 1–16 (2016).
    • 16. Marriott M, Post B, Chablani L. A comparison of cancer vaccine adjuvants in clinical trials. Cancer Treat. Res. Commun. 34, 100667–100679 (2023).
    • 17. Givord C, Welsby I, Detienne S et al. Activation of the endoplasmic reticulum stress sensor IRE1A by the vaccine adjuvant AS03 contributes to its immunostimulatory properties. NPJ Vaccines 3(1), 1–12 (2018).
    • 18. Vesikari T, Kirstein J, Devota Go G et al. Efficacy, immunogenicity, and safety evaluation of an MF59-adjuvanted quadrivalent influenza virus vaccine compared with non-adjuvanted influenza vaccine in children: a multicentre, randomised controlled, observer-blinded, phase 3 trial. Lancet Respir. Med. 6(5), 345–356 (2018).
    • 19. Pifferi C, Fuentes R, Fernández-Tejada A. Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat. Rev. Chem. 5(3), 197–216 (2021).
    • 20. Wang Z, Li S, Shan P et al. Improved aluminum adjuvants eliciting stronger immune response when mixed with hepatitis b virus surface antigens. ACS Omega 7(38), 34528–34537 (2022).
    • 21. O'Hagan DT, Ott GS, De Gregorio E et al. The mechanism of action of MF59 – an innately attractive adjuvant formulation. Vaccine 30(29), 4341–4348 (2012).
    • 22. Ko E, Kang S. Immunology and efficacy of MF59-adjuvanted vaccines. Human Vaccines Immunother. 14(12), 3401–3045 (2018).
    • 23. Nguyen-Contant P, Sangster MY, Topham DJ. Squalene-based influenza vaccine adjuvants and their impact on the hemagglutinin-specific B cell response. Pathogens 10(3), 355–368 (2021).
    • 24. Nakaya HI, Clutterbuck E, Kazmin D et al. Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proc. Natl Acad. Sci. USA 113(7), 1853–1858 (2016).
    • 25. Cruz-Valdez A, Valdez-Zapata G, Patel SS et al. MF59-adjuvanted influenza vaccine (Fluad®) elicits higher immune responses than a non-adjuvanted influenza vaccine (Fluzone®): a randomized, multicenter, phase III pediatric trial in Mexico. Hum Vaccin. Immunother. 14(2), 386–395 (2018).
    • 26. Keitel W, Groth N, Lattanzi M et al. Dose ranging of adjuvant and antigen in a cell culture H5N1 influenza vaccine: safety and immunogenicity of a phase 1/2 clinical trial. Vaccine 28(3), 840–848 (2010).
    • 27. Shah RR, O'Hagan DT, Amiji MM, Brito LA. The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond.) 9(17), 2671–2681 (2014).
    • 28. O'Hagan D, Van Nest G. Ott GS et al. Use of microparticles combined with submicron oil-in-water emulsions. Patent WO1999030737A1 1–49 (2002).
    • 29. Stelzner JJ, Behrens M, Behrens SE et al. Squalene containing solid lipid nanoparticles, a promising adjuvant system for yeast vaccines. Vaccine 36(17), 2314–2320 (2018).
    • 30. InvivoGen. AddaVax™ Squalene-based oil-in-water adjuvant. www.invivogen.com/addavax
    • 31. Amaral MP, de Apostolico JS, Tomita N et al. Homologous prime-boost with zika virus envelope protein and poly (i:c) induces robust specific humoral and cellular immune responses. Vaccine 38(20), 3653–3664 (2020).
    • 32. Rosendahl Huber SK, Hendriks M, Jacobi RHJ et al. Immunogenicity of influenza vaccines: evidence for differential effect of secondary vaccination on humoral and cellular immunity. Front. Immunol. 9, 3103–3115 (2018). •• In this clinical trial it is demonstrated that MF59 can stimulate cellular and humoral responses.
    • 33. Smith CL, Bednarchik B, Aung H et al. Humoral and cellular immunity induced by adjuvanted and standard trivalent influenza vaccine in older nursing home residents. J. Infect. Dis. Mar 23, jiad071 (2023).
    • 34. Pavlick A, Blazquez AB, Meseck M et al. Combined vaccination with NY-ESO-1 protein, poly-ICLC, and Montanide improves humoral and cellular immune responses in high-risk melanoma patients. Cancer Immunol. Res. 8(1), 70–80 (2020).
    • 35. Choque-Guevara R, Poma-Acevedo A, Montesinos-Millán R et al. Squalene in oil-based adjuvant improves the immunogenicity of SARS-CoV-2 RBD and confirms safety in animal models. PLOS ONE 17(8), 1–19 (2022).
    • 36. Wang R, Sun C, Ma J et al. A bivalent COVID-19 vaccine based on alpha and beta variants elicits potent and broad immune responses in mice against SARS-COV-2 variants. Vaccines (Basel) 10(5), 702–718 (2022).
    • 37. Wang R, Huang H, Yu C et al. A spike-trimer protein-based tetravalent COVID-19 vaccine elicits enhanced breadth of neutralization against SARS-CoV-2 Omicron subvariants and other variants. Sci. China Life Sci. 66 (8), 1–13 (2023).
    • 38. Committee for Medicinal Products for Human Use. The european medicines agency. Presented at: Guideline on adjuvants in vaccines for human use. (2005). www.ema.europa.eu/
    • 39. World Health Organization. Guidelines on the non-clinical evaluation of vaccine adjuvants and adjuvanted vaccines, Annex 2, TRS No 987. (2014). www.who.int/publications/
    • 40. Dinadayala P, Gleizal G, Guinamand S et al. Characterization of antigen adjuvant interactions in polyacrylate adjuvanted vaccines. Biochem. Biophys. Rep. 33, 101405–101412 (2023).
    • 41. Sanyal G, Särnefält A, Kumar A. Perspective considerations for bioanalytical characterization and batch release of COVID-19 vaccines. NPJ Vaccines 6, 53–62 (2021).
    • 42. O'Hagan DT, Ott GS, Van Nest G et al. The history of MF59® adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 12(1), 13–30 (2013).
    • 43. Ott G, Barchfeld GL, Van Nest G. Enhancement of humoral response against human influenza vaccine with the simple submicron oil/water emulsion adjuvant MF59. Vaccine 13(16), 1557–1562 (1995).
    • 44. Elder DTeasdale ANims RW (Eds). ICH Q9 quality risk management. In: ICH Quality Guidelines: An Implementation Guide (1st Edition). 579–610 John Wiley & Sons, Inc., Hoboken, (NJ, USA) (2018).
    • 45. Committee for Medicinal Products for Human Use. Guideline Q9 (R1) on quality risk management. Step 5. In: International Council for Harmonisation (ICH). Guideline Q9 (R1) on quality risk management. Step 5, revision 1 - Technical requirements for registration of pharmaceutical for human use. 18–19 (2023). •• This ICH guide provides essential guidelines for risk analysis during the development of a drug for human use.
    • 46. CMC-Vaccine Working Group. A-Vax: applying quality by design to vaccines (2012). http://qbdworks.com/wp-content/uploads/2014/06/a-vax-applying-qbd-to-vaccines.pdf
    • 47. de Van Berg D, Kis Z, Behmer CF et al. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. NPJ Vaccines 65, 1–10 (2021).
    • 48. Fahmy R, Kona R, Dandu R et al. Quality by design I: application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. AAPS PharmSciTech 13(4), 1243–1254 (2012).
    • 49. Peng J, Dong WJ, Li L et al. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions. J. Food Drug. Anal. 23(4), 828–835 (2015). • Details the impact of process parameters in a high-pressure homogenizer on the globule size of an emulsion.
    • 50. Kruszewski B, Zawada K, Karpiński P. Impact of high-pressure homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice. Molecules 26(6), 1802–1818 (2021).
    • 51. Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira (Volume 1), (6th Edition) Chapters 5.1.2; 5.2.19; 5.2.7; 5.2.28; 5.2.22; 5.5.3.2.1; 5.5.2.2. Brasília, Brazil (2019). www.gov.br/anvisa/
    • 52. The United States Pharmacopeial Convention. USP 43: The United States pharmacopeia (Volume 1). USP 43-NF 38 - Chapters 1085, 785, 432, 729, 1430.3. Rockville, MD, USA (2022).
    • 53. Wei Y, Xiong J, Larson NR et al. Effect of 2 emulsion-based adjuvants on the structure and thermal stability of Staphylococcus aureus alpha-toxin. J. Pharm. Sci. 107(9), 2325–2334 (2018).
    • 54. Singh A, Raju R, Mrad M et al. The reciprocal EC50 value as a convenient measure of the potency of a compound in bioactivity-guided purification of natural products. Fitoterapia 143, 104598–110464 (2020).
    • 55. Biological activity of cytokines: specific activity (units/mg) vs. international units (iu) | stemcell technologies. www.stemcell.com/biological-activity-of-cytokines-specific-activity-units-mg-vs-international-units.html
    • 56. Wajnberg A, Amanat F, Firpo A et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 370(6521), 1227–1230 (2020).
    • 57. Hamed SF, Abo-Elwafa GA. Preparation of novel nanoemulsions from omega-3 rich oil. Grasas y Aceites 71(2), e350 (2020).
    • 58. Abdel-Aty AAR, Aziz YSA, Ahmed RMG et al. High performance isotropic polyethersulfone membranes for heavy oil-in-water emulsion separation. Sep. Purif. Technol. 253, 117467 (2020).
    • 59. Wang W, Lin J, Cheng J et al. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J. Hazard. Mater. 385, 121582 (2020).
    • 60. Chinyoka T. Comparative response of Newtonian and non-Newtonian fluids subjected to exothermic reactions in shear flow. Int. J. Appl. Comput. Math. 7(3), 1–19 (2021).
    • 61. Wang H, He Z, Li J et al. Early plasma osmolality levels and clinical outcomes in children admitted to the pediatric intensive care unit: a single-center cohort study. Front. Pediatr. 9, 745204 (2021).
    • 62. LTDA M. Zetasizer Nano user manual (English) | Malvern Panalytical (2013). www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/man0485en
    • 63. Lai RPJ, Seaman MS, Tonks P et al. Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants. PLOS ONE 7(4), e35083 (2012).
    • 64. HogenEsch H, O'Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines 3(1), 1–11 (2018).
    • 65. O'Donnell JS, Isaacs A, Jakob V et al. Characterization and comparison of novel adjuvants for a prefusion clamped MERS vaccine. Front. Immunol. 13, 976968 (2022).
    • 66. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21(2), 83–100 (2020).
    • 67. Azeem A, Rizwan M, Ahmad FJ et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech 10(1), 69–76 (2009).
    • 68. Azmi NAN, Elgharbawy AAM, Motlagh SR et al. Nanoemulsions: factory for food, pharmaceutical and cosmetics. Processes 7(9), 617–651 (2019).
    • 69. Manuel Montes de Oca-A J, Jorge Candal R, Lidia Herrera M et al. Nanoemulsions: stability and physical properties. Curr. Opin. Food Sci. 16, 1–6 (2017).
    • 70. Kong M, Park HJ. Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydr. Polym. 83(3), 1303–1310 (2011).
    • 71. Herneisey M, Liu L, Lambert E et al. Development of theranostic perfluorocarbon nanoemulsions as a model non-opioid pain nanomedicine using a quality by design (QbD) approach. AAPS PharmSciTech 20(2), 65–91 (2019).
    • 72. Mirković D, Ibrić S, Balanč B et al. Evaluation of the impact of critical quality attributes and critical process parameters on quality and stability of parenteral nutrition nanoemulsions. J. Drug Deliv. Sci. Technol. 39, 341–347 (2017).
    • 73. Zhao L, Zhu Z, Ma L et al. O/W nanoemulsion as an adjuvant for an inactivated H3N2 influenza vaccine: based on particle properties and mode of carrying. Int. J. Nanomed. 15, 2071–2083 (2020). • Analyzes how globule size, polydispersion index and oil phase composition can impact the performance of nanoemulsified adjuvants.
    • 74. Calabro S, Tritto E, Pezzotti A et al. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31(33), 3363–3369 (2013).
    • 75. Rele S. COVID-19 vaccine development during pandemic: gap analysis, opportunities, and impact on future emerging infectious disease development strategies. Hum. Vaccin. Immunother. 17(4), 1122–1127 (2021).
    • 76. Danaei M, Dehghankhold M, Ataei S et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2), 57–74 (2018).
    • 77. Usach I, Martinez R, Festini T et al. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv. Ther. 36(11), 2986–2996 (2019).
    • 78. Yang SC, Benita S. Enhanced absorption and drug targeting by positively charged submicron emulsions. Drug Dev. Res. 50(3–4), 476–486 (2000).
    • 79. Zhang J, Miao J, Han X et al. Development of a novel oil-in-water emulsion and evaluation of its potential adjuvant function in a swine influenza vaccine in mice. BMC Vet. Res. 14(1), 415–426 (2018).
    • 80. Aghebati T, Mohammadpour AH, Afshar M et al. A novel atheroprotective role of MF59-like adjuvant when co-administered with CETP vaccine in rabbit model of atherosclerosis. Iran J. Basic Med. Sci. 19(12), 1345–1352 (2016).
    • 81. International Council for Harmonisation (ICH). Topic Q6A specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances. Step 5 (2006). www.ema.europa.eu/
    • 82. Della Cioppa G, Nicolay U, Lindert K et al. Superior immunogenicity of seasonal influenza vaccines containing full dose of MF59® adjuvant. Hum. Vaccin. Immunother. 8(2), 216–227 (2012). •• Clinical study with Fluad® comparing different doses of the MF59® adjuvant.
    • 83. Food and Drug Administration, FDA. Guidance for industry content and format of investigational new drug applications (INDs) for phase 1 studies of drugs, including well-characterized, therapeutic, biotechnology-derived products (1995). www.gmp-compliance.org/
    • 84. Nony P, Girard P, Chabaud S et al. Impact of osmolality on burning sensations during and immediately after intramuscular injection of 0.5 ml of vaccine suspensions in healthy adults. Vaccine 19(27), 3645–3651 (2001).
    • 85. Zhai J, Hoffmann SV, Day L et al. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability. Langmuir 28(5), 2357–2367 (2012).
    • 86. Zhai J, Wooster TJ, Hoffmann SV et al. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability. Langmuir 27(15), 9227–9236 (2011).
    • 87. Fox CB, Kramer RM, LB V et al. Working together: interactions between vaccine antigens and adjuvants. Ther. Adv. Vaccines 1(1), 7–20 (2013). • In this review, the authors detail interaction studies of different antigens with emulsified adjuvants.
    • 88. Ott G, Barchfeld GL, Chernoff D et al. MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm. Biotechnol. 6, 277–296 (1995).
    • 89. Huang M, Wang W. Factors affecting alum-protein interactions. Int. J. Pharm. 466(1-2), 139–146 (2014).
    • 90. Romero Méndez IZ, Shi Y, HogenEsch H et al. Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 25(5), 825–833 (2007).