We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Antiproliferative and apoptotic potential of methotrexate lipid nanoparticles in a murine breast cancer model

    Chaitali Surve

    Department of Pharmaceutics, Vivekanand Education Society's College of Pharmacy, Mumbai, India

    Faculty of Pharmacy, Pacific Academy of Higher Education & Research University, Udaipur, Rajasthan, India

    ,
    Ananya Banerjee

    School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India

    ,
    Anupriya S

    School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India

    ,
    Rajasree Chakraborty

    School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India

    ,
    Dhiraj Kumar

    National Centre for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India

    ,
    Ramesh Butti

    National Centre for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India

    ,
    Mahadeo Gorain

    National Centre for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India

    ,
    Sabyasachi Parida

    Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha 24, India

    ,
    Gopal C Kundu

    School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India

    National Centre for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India

    ,
    Supriya Shidhaye

    Department of Pharmaceutics, Vivekanand Education Society's College of Pharmacy, Mumbai, India

    &
    Srinivas Patnaik

    *Author for correspondence:

    E-mail Address: srinivas.patnaik@kiitbiotech.ac.in

    School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India

    Published Online:https://doi.org/10.2217/nnm-2021-0446

    Aim: To evaluate the efficacy of novel methotrexate-loaded nanoparticles (MTX-NPs) in vitro and in vivo in the treatment of breast cancer. Materials & methods: MTX-NPs were tested for cellular uptake, cell viability, cell cycle, cellular wound migration and changes in tumor volume using characterized NPs. Results: The solid lipid NPs (SLNPs) showed strong cellular uptake, increased apoptosis, controlled cytotoxicity at lower IC50 of methotrexate and a sizable reduction in tumor burden. Conclusion: MTX-NP oral formulation can be a promising candidate in breast cancer treatment with improved cellular uptake and in vivo efficacy.

    References

    • 1. Meiss A, Thomas M, Modesitt S, Ring K, Atkins K, Mills A. Clinicopathologic characterization of breast carcinomas in patients with non-BRCA germline mutations: results from a single institution's high-risk population. Hum. Pathol. 82, 20–31 (2018).
    • 2. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93, 52–79 (2015).
    • 3. Jin J, Zhu L, Chen M et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence. 9, 923–942 (2015).
    • 4. Bae Y, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control Release. 153(3), 198–205 (2011).
    • 5. Din F, Aman W, Ullah I et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine 12, 7291–7309 (2017).
    • 6. Housman G, Byler S, Heerboth S et al. Drug resistance in cancer: an overview. Cancers (Basel) 6(3), 1769–1792 (2014).
    • 7. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull. 7(3), 339–348 (2017).
    • 8. Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol. (Dordr) 39(5), 397–410 (2016).
    • 9. Nakamura Y, Mochida A, Choyke P, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 27(10), 2225–2238 (2016).
    • 10. de Jong W, Borm P. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3(2), 133–149 (2008).
    • 11. Li F, Zhou X, Zhou H et al. Reducing both Pgp overexpression and drug efflux with anti-cancer gold-paclitaxel nanoconjugates. PLoS ONE 11(7), doi: 10.1371/journal.pone.0160042 (2016).
    • 12. Cronstein B, Aune T. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16(3), 145–154 (2020).
    • 13. Jang J, Jeong S, Lee Y. Preparation and in vitro/in vivo characterization of polymeric nanoparticles containing methotrexate to improve lymphatic delivery. Int. J. Mol. Sci. 20(13), doi: 10.3390/ijms20133312 (2019).
    • 14. Senapati S, Mahanta A, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 3(1), doi: 10.1038/s41392-017-0004-3 (2018).
    • 15. Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 9(3), doi: 10.3390/nano9030474 (2019).
    • 16. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv. Pharm. Bull. 5(3), 305–313 (2015).
    • 17. Duan Y, Dhar A, Patel C et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 10(45), 26777–26791 (2020).
    • 18. Surve C, Singh R, Banerjee A, Patnaik S, Shidhaye S. Formulation and QBD based optimization of methotrexate-loaded solid lipid nanoparticles for an effective anti-cancer treatment. IJAP 13(5), 132–143 (2021).
    • 19. Azarmi S, Tao X, Chen H et al. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int. J. Pharm. 319(1–2), 155–161 (2006).
    • 20. Chen J, Huang L, Lai H et al. Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol. Pharm. 11(7), 2213–2223 (2014).
    • 21. Jain S, Chakraborty G, Kundu G. The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C alpha/c-Src/IkappaB kinase alpha/beta-dependent prostate tumor progression and angiogenesis. Cancer Res. 66(13), 6638–6648 (2006).
    • 22. Chakraborty G, Jain S, Kundu G. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res. 68(1), 152–161 (2008).
    • 23. Zhang H, Hollis C, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int. J. Pharm. 415(1–2), 293–300 (2011).
    • 24. She W, Li N, Luo K et al. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 34(9), 2252–2264 (2013).
    • 25. Stella B, Peira E, Dianzani C et al. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials (Basel) 8(2), doi: 10.3390/nano8020110 (2018).
    • 26. Ferreira M, Chaves L, Lima S, Reis S. Optimization of nanostructured lipid carriers loaded with methotrexate: a tool for inflammatory and cancer therapy. Int. J. Pharm. 492(1–2), 65–72 (2015).
    • 27. Dang Q, Liu C, Wang Y, Yan J, Wan H, Fan B. Characterization and biocompatibility of injectable microspheres-loaded hydrogel for methotrexate delivery. Carbohydr Polym. 136, 516–526 (2016).
    • 28. Dhanikula R, Argaw A, Bouchard J, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol. Pharm. 5(1), 105–116 (2008).
    • 29. Ashwanikumar N, Kumar N, Nair S, Kumar G. Dual drug delivery of 5-fluorouracil (5-FU) and methotrexate (MTX) through random copolymeric nanomicelles of PLGA and polyethylenimine demonstrating enhanced cell uptake and cytotoxicity. Colloids Surf. B Biointerfaces 122, 520–528 (2014).
    • 30. Kuznetsova N, Vodovozova E. Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer. Biochemistry (Mosc) 79(8), 797–804 (2014).
    • 31. Jain A, Jain A, Garg N et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin-methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 24, 140–151 (2015).
    • 32. Jain S, Mathur R, Das M, Swarnakar N, Mishra A. Synthesis, pharmacoscintigraphic evaluation and antitumor efficacy of methotrexate-loaded, folate-conjugated, stealth albumin nanoparticles. Nanomedicine (Lond.) 6(10), 1733–1754 (2011).
    • 33. Stapf M, Teichgräber U, Hilger I. Methotrexate-coupled nanoparticles and magnetic nanochemothermia for the relapse-free treatment of T24 bladder tumors. Int. J. Nanomedicine 12, 2793–2811 (2017).
    • 34. Panda J, Kaul A, Kumar S et al. Modified dipeptide-based nanoparticles: vehicles for targeted tumor drug delivery. Nanomedicine (Lond.) 8(12), 1927–1942 (2013).
    • 35. Zhao Y, Guo Y, Li R et al. Methotrexate nanoparticles prepared with codendrimer from polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendrons: antitumor efficacy in vitro and in vivo. Sci. Rep. 6, doi: 10.1038/srep28983 (2016).
    • 36. Garg N, Singh B, Jain A et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf. B Biointerfaces 146, 114–126 (2016).
    • 37. Mulla J, Suresh S, Khazi I. Formulation, characterization and in vitro evaluation of methotrexate solid lipid nanoparticles. RJPT (2009). https://rjptonline.org/AbstractView.aspx?PID=2009-2-4-74
    • 38. Ruckmani K, Sivakumar M, Ganeshkumar P. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol. 6(9–10), 2991–2995 (2006).