We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanocarrier-based approaches to combat chronic obstructive pulmonary disease

    Tarun Virmani

    School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India

    ,
    Girish Kumar

    School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India

    ,
    Reshu Virmani

    School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India

    ,
    Ashwani Sharma

    School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India

    &
    Kamla Pathak

    *Author for correspondence: Tel.: +91 863 013 5023;

    E-mail Address: kamlapathak5@gmail.com

    Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, 206001, India

    Published Online:https://doi.org/10.2217/nnm-2021-0403

    Abnormalities in airway mucus lead to chronic disorders in the pulmonary system such as asthma, fibrosis and chronic obstructive pulmonary disease (COPD). Among these, COPD is more prominent worldwide. Various conventional approaches are available in the market for the treatment of COPD, but the delivery of drugs to the target site remains a challenge with conventional approaches. Nanocarrier-based approaches are considered the best due to their sustained release properties to the target site, smaller size, high surface-to-volume ratio, patient compliance, overcoming airway defenses and improved pharmacotherapy. This article provides updated information about the treatment of COPD along with nanocarrier-based approaches as well as the potential of gene therapy and stem cell therapy to combat the COPD.

    References

    • 1. Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob. Health Epidemiol. Genomics 3, e4 (2018).
    • 2. Repine JE, Bast A, Lankhorst I. The oxidative stress study group. Oxidative stress in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 156(2), 341–357 (1997).
    • 3. Rahman I. The role of oxidative stress in the pathogenesis of COPD: implications for therapy. Treat. Respir. Med. 4(3), 175–200 (2005).
    • 4. Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J. Appl. Physiol. 72(3), 1016–1023 (1992).
    • 5. Carnevali S, Petruzzelli S, Longoni B et al. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 284(6), L955–963 (2003).
    • 6. Togo S, Holz O, Liu X et al. Lung fibroblast repair functions in patients with chronic obstructive pulmonary disease are altered by multiple mechanisms. Am. J. Respir. Crit. Care Med. 178(3), 248–260 (2008).
    • 7. Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, pathophysiology and currently proposed treatments of chronic obstructive pulmonary disease. Pharmaceuticals 14(10), 979 (2021).
    • 8. Thimmulappa RK, Chattopadhyay I, Rajasekaran S. Oxidative stress mechanisms in the pathogenesis of environmental lung diseases. Oxidative Stress Lung Dis. 2, 103–137 (2019).
    • 9. Walters EH, Shukla SD, Mahmood MQ, Ward C. Fully integrating pathophysiological insights in COPD: an updated working disease model to broaden therapeutic vision. Eur. Respir. Rev. 30(160), 200364(2021). https://err.ersjournals.com/content/30/160/200364
    • 10. Hogg JC, Paré PD, Hackett T-L. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol. Rev. 97(2), 529–552 (2017).
    • 11. Rao W, Wang S, Duleba M et al. Regenerative metaplastic clones in COPD lung drive inflammation and fibrosis. Cell 181(4), 848–864.e18 (2020).
    • 12. Barnes PJ, Baker J, Donnelly LE. Cellular senescence as a mechanism and target in chronic lung diseases. Am. J. Respir. Crit. Care Med. 200(5), 556–564 (2019).
    • 13. Baker JR, Vuppusetty C, Colley T et al. MicroRNA-570 is a novel regulator of cellular senescence and inflammaging. FASEB J. 33(2), 1605–1616 (2019).
    • 14. Herbig U, Jobling WA, Chen BPC, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14(4), 501–513 (2004).
    • 15. Kuźnar-Kamińska B, Mikuła-Pietrasik J, Witucka A et al. Serum from patients with chronic obstructive pulmonary disease induces senescence-related phenotype in bronchial epithelial cells. Sci. Rep. 8(1), 12940 (2018).
    • 16. Diaz AA, Maselli DJ, Rahaghi F et al. Pulmonary vascular pruning in smokers with bronchiectasis. ERJ Open Res. 4(4), 00044–02018 (2018).
    • 17. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. Mech. Dis. 4(1), 435–459 (2009).
    • 18. Boucher RC. Muco-obstructive lung diseases. N. Engl. J. Med. 380(20), 1941–1953 (2019).
    • 19. Koo H-K, Vasilescu DM, Booth S et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir. Med. 6(8), 591–602 (2018).
    • 20. Hattesohl ADM, Jörres RA, Dressel H et al. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose: eNose discrimination of COPD and AATD. Respirology 16(8), 1258–1264 (2011).
    • 21. Alp G, Aydogan N. Lipid-based mucus penetrating nanoparticles and their biophysical interactions with pulmonary mucus layer. Eur. J. Pharm. Biopharm. 149, 45–57 (2020).
    • 22. Antus B. Pharmacotherapy of chronic obstructive pulmonary disease: a clinical review. ISRN Pulmonol. 2013, 1–11 (2013).
    • 23. Hsu E, Bajaj T. Beta 2 agonists [Internet]. In: StatPearls, StatPearls Publishing, FL, USA (2021).
    • 24. Saberi F, O'Donnell DE. The role of tiotropium bromide, a long-acting anticholinergic bronchodilator, in the management of COPD. Treat. Respir. Med. 4(4), 275–281 (2005).
    • 25. Barr RG, Rowe BH, Camargo CA. Methylxanthines for exacerbations of chronic obstructive pulmonary disease: meta-analysis of randomised trials. BMJ 327(7416), 643 (2003).
    • 26. Falk JA, Minai OA, Mosenifar Z. Inhaled and systemic corticosteroids in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 5(4), 506–512 (2008).
    • 27. Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2017(9), CD002309 (2017).
    • 28. Rogers DF. Mucoactive drugs for asthma and COPD: any place in therapy? Expert Opin. Investig. Drugs 11(1), 15–35 (2002).
    • 29. Qiu S, Zhong X. Macrolides: a promising pharmacologic therapy for chronic obstructive pulmonary disease. Ther. Adv. Respir. Dis. 11(3), 147–155 (2017).
    • 30. Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int. J. Chron. Obstruct. Pulmon. Dis. 10, 261–276 (2015).
    • 31. Yousuf A, Brightling CE. Biologic drugs: a new target therapy in COPD? COPD. 15(2), 99–107 (2018).
    • 32. Raju SV, Solomon GM, Dransfield MT, Rowe SM. Acquired CFTR dysfunction in chronic bronchitis and other diseases of mucus clearance. Clin. Chest Med. 37(1), 147–158 (2016).
    • 33. Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: implications for chronic airway diseases. Int. J. Nanomed. 15, 3803–3826 (2020).
    • 34. Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 116(5), 2826–2885 (2016).
    • 35. Matsuo Y, Ishihara T, Ishizaki J, Miyamoto K, Higaki M, Yamashita N. Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell. Immunol. 260(1), 33–38 (2009).
    • 36. Montuschi P, Malerba M, Macis G, Mores N, Santini G. Triple inhaled therapy for chronic obstructive pulmonary disease. Drug Discov. Today 21(11), 1820–1827 (2016).
    • 37. Jain KK. Current status and future prospects of drug delivery systems. Methods Mol. Biol. Clifton NJ. 1141, 1–56 (2014).
    • 38. Virmani T, Virmani R, Singh SS, Gupta J. Nanoparticle formulation-a new approach to enhance dissolution & oral bioavailability of poorly soluble drugs. Int. J. Multidiscip. Sci. 1, 1–3 (2018).
    • 39. Alexescu TG, Tarmure S, Negrean V et al. Nanoparticles in the treatment of chronic lung diseases. J. Mind Med. Sci. 6(2), 224–231 (2019).
    • 40. Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin. Exp. Allergy 46(8), 1033–1042 (2016).
    • 41. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnol. 9(1), 55 (2011).
    • 42. Yavuz B, Pehlivan SB, Vural İ, Ünlü N. In vitro/in vivo evaluation of dexamethasone–PAMAM dendrimer complexes for retinal drug delivery. J. Pharm. Sci. 104(11), 3814–3823 (2015).
    • 43. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 5(2), 123–127 (2015).
    • 44. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci. 13(4), 288–303 (2018).
    • 45. Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J. Drug Target 22(7), 576–583 (2014).
    • 46. Kazi KM, Mandal AS, Biswas N et al. Niosome: a future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 1(4), 374–380 (2010).
    • 47. Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomed. 3(1), 1–19 (2008).
    • 48. Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin. Drug Deliv. 15(8), 821–834 (2018).
    • 49. Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WIREs Nanomed. Nanobiotechnol. 9(5), (2017). https://onlinelibrary.wiley.com/doi/10.1002/wnan.1450
    • 50. Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 125, 75–84 (2015).
    • 51. Pinheiro M, Lúcio M, Lima JLFC, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomed. 6(8), 1413–1428 (2011).
    • 52. Allen TM. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 56(5), 747–756 (1998).
    • 53. Konduri KS, Nandedkar S, Rickaby DA, Düzgüneş N, Gangadharam PRJ. The use of sterically stabilized liposomes to treat asthma. Methods Enzymol. 391, 413–427 (2005).
    • 54. Karn PR, Vanić Z, Pepić I, Skalko-Basnet N. Mucoadhesive liposomal delivery systems: the choice of coating material. Drug Dev. Ind. Pharm. 37(4), 482–488 (2011).
    • 55. Adel IM, ElMeligy MF, Abdelrahim MEA et al. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int. J. Nanomed. 16, 2667–2687 (2021).
    • 56. Parmar JJ, Singh DJ, Hegde DD et al. Development and evaluation of inhalational liposomal system of budesonide for better management of asthma. Indian J. Pharm. Sci. 72(4), 442–448 (2010).
    • 57. Al-Amin MD, Bellato F, Mastrotto F et al. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: formulation challenges. Int. J. Mol. Sci. 21(5), E1611 (2020).
    • 58. Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm. 128, 337–362 (2018).
    • 59. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother. Biomed. Pharmacother. 103, 598–613 (2018).
    • 60. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Rel. Off. J. Control. Rel. Soc. 264, 306–332 (2017).
    • 61. Desoqi MH, El-Sawy HS, Kafagy E, Ghorab M, Gad S. Fluticasone propionate-loaded solid lipid nanoparticles with augmented anti-inflammatory activity: optimisation, characterisation and pharmacodynamic evaluation on rats. J. Microencapsul. 38(3), 177–191 (2021).
    • 62. Beloqui A, Coco R, Alhouayek M et al. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. Int. J. Pharm. 454(2), 775–783 (2013).
    • 63. Esmaeili M, Aghajani M, Abbasalipourkabir R, Amani A. Budesonide-loaded solid lipid nanoparticles for pulmonary delivery: preparation, optimization, and aerodynamic behavior. Artif. Cells Nanomed. Biotechnol. 44(8), 1964–1971 (2016).
    • 64. Khan I, Hussein S, Houacine C et al. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using Beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int. J. Pharm. 598, 120376 (2021).
    • 65. Jain K, Jain NK. Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J. Nanosci. Nanotechnol. 14(7), 5075–5087 (2014).
    • 66. Xu Y, Liu H, Song L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J. Nanobiotechnol. 18(1), 145 (2020).
    • 67. Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJH. Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol. Pharm. 10(8), 2986–2995 (2013).
    • 68. Zhong Q, Merkel OM, Reineke JJ, da Rocha SRP. Effect of the route of administration and PEGylation of poly(amidoamine) dendrimers on their systemic and lung cellular biodistribution. Mol. Pharm. 13(6), 1866–1878 (2016).
    • 69. Nasr M, Najlah M, D'Emanuele A, Elhissi A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int. J. Pharm. 461(1–2), 242–250 (2014).
    • 70. Kim S, Park H, Song Y et al. Reduction of oxidative stress by p-hydroxybenzyl alcohol-containing biodegradable polyoxalate nanoparticulate antioxidant. Biomaterials 32(11), 3021–3029 (2011).
    • 71. Madl AK, Plummer LE, Carosino C, Pinkerton KE. Nanoparticles, lung injury, and the role of oxidant stress. Annu. Rev. Physiol. 76, 447–465 (2014).
    • 72. Beck-Broichsitter M, Gauss J, Gessler T, Seeger W, Kissel T, Schmehl T. Pulmonary targeting with biodegradable salbutamol-loaded nanoparticles. J. Aerosol Med. Pulm. Drug Deliv. 23(1), 47–57 (2010).
    • 73. Mohamed A, Pekoz AY, Ross K, Hutcheon GA, Saleem IY. Pulmonary delivery of nanocomposite microparticles (NCMPs) incorporating miR-146a for treatment of COPD. Int. J. Pharm. 569, 118524 (2019).
    • 74. Virmani R, Pathak K. Targeted polymeric micellar systems for respiratory diseases [Internet]. In: Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems, Elsevier, 411–439 (2020).
    • 75. Gaber NN, Darwis Y, Peh K-K, Tan YT-F. Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J. Nanosci. Nanotechnol. 6(9), 3095–3101 (2006).
    • 76. Pellosi DS, d'Angelo I, Maiolino S et al. In vitro/in vivo investigation on the potential of Pluronic® mixed micelles for pulmonary drug delivery. Eur. J. Pharm. Biopharm. 130, 30–38 (2018).
    • 77. Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Tan YTF. Rehydrated sterically stabilized phospholipid nanomicelles of budesonide for nebulization: physicochemical characterization and in vitro, in vivo evaluations. Int. J. Nanomed. 6, 2351–2366 (2011).
    • 78. Craparo EF, Teresi G, Bondi’ ML, Licciardi M, Cavallaro G. Phospholipid-polyaspartamide micelles for pulmonary delivery of corticosteroids. Int. J. Pharm. 406(1–2), 135–144 (2011).
    • 79. Yoncheva K, Petrov P, Pencheva I, Konstantinov S. Triblock polymeric micelles as carriers for anti-inflammatory drug delivery. J. Microencapsul. 32(3), 224–230 (2015).
    • 80. Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 56, 101581 (2020).
    • 81. Terzano C, Allegra L, Alhaique F, Marianecci C, Carafa M. Non-phospholipid vesicles for pulmonary glucocorticoid delivery. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV. 59(1), 57–62 (2005).
    • 82. Nasr M, Nawaz S, Elhissi A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int. J. Pharm. 436(1–2), 611–616 (2012).
    • 83. Singh S, Virmani T, Kohli K. Nanoemulsion system for improvement of raspberry ketone oral bioavailability. Indo Glob. J. Pharm. Sci. 10(01), 33–42 (2020).
    • 84. Amani A, York P, Chrystyn H, Clark BJ. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech. 11(3), 1147–1151 (2010).
    • 85. De Leo V, Ruscigno S, Trapani A et al. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm. 545(1–2), 378–388 (2018).
    • 86. Nirale NM, Vidhate RD, Nagarsenker MS. Fluticasone propionate liposomes for pulmonary delivery. Indian J. Pharm. Sci. 71(6), 709–711 (2009).
    • 87. Aljihani SA, Alehaideb Z, Alarfaj RE et al. Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli. Saudi J. Biol. Sci. 27(11), 3065–3071 (2020).
    • 88. Kanhai KMS, Zuiker RGJA, Stavrakaki I et al. Glutathione-PEGylated liposomal methylprednisolone in comparison to free methylprednisolone: slow release characteristics and prolonged lymphocyte depression in a first-in-human study. Br. J. Clin. Pharmacol. 84(5), 1020–1028 (2018).
    • 89. Amasya G, Şengel Türk CT, Badilli U, Tarimci N. Development and statistical optimization of solid lipid nanoparticle formulations of fluticasone propionate. Turk. J. Pharm. Sci. 17(4), 359–366 (2020).
    • 90. Doktorovová S, Araújo J, Garcia ML, Rakovský E, Souto EB. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf. B Biointerfaces. 75(2), 538–542 (2010).
    • 91. Jaafar-Maalej C, Andrieu V, Elaissari A, Fessi H. Beclomethasone-loaded lipidic nanocarriers for pulmonary drug delivery: preparation, characterization and in vitro drug release. J. Nanosci. Nanotechnol. 11(3), 1841–1851 (2011).
    • 92. Daman Z, Gilani K, Rouholamini Najafabadi A, Eftekhari HR, Barghi MA. Formulation of inhalable lipid-based salbutamol sulfate microparticles by spray drying technique. DARU J. Pharm. Sci. 22(1), 50 (2014).
    • 93. Amore E, Manca ML, Ferraro M et al. Salmeterol Xinafoate (SX) loaded into mucoadhesive solid lipid microparticles for COPD treatment. Int. J. Pharm. 562, 351–358 (2019).
    • 94. Amore E, Ferraro M, Manca ML et al. Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment. Nanomed. 12(19), 2287–2302 (2017).
    • 95. Nance E, Kambhampati SP, Smith ES et al. Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. J. Neuroinflamm. 14, 252 (2017).
    • 96. Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SRP. Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol. Pharm. 11(6), 1808–1822 (2014).
    • 97. Falconieri M, Adamo M, Monasterolo C, Bergonzi M, Coronnello M, Bilia A. New dendrimer-based nanoparticles enhance curcumin solubility. Planta Med. 83(05), 420–425 (2016).
    • 98. Ali H, Weigmann B, Collnot E-M, Khan SA, Windbergs M, Lehr C-M. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa–pharmaceutical characterization and fluorescence imaging. Pharm. Res. 33(5), 1085–1092 (2016).
    • 99. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392(1–2), 1–19 (2010).
    • 100. Hidalgo A, Cruz A, Pérez-Gil J. Pulmonary surfactant and nanocarriers: toxicity versus combined nanomedical applications. Biochim. Biophys. Acta BBA - Biomembr. 1859(9), 1740–1748 (2017).
    • 101. Song S, Embury J, Laipis PJ, Berns KI, Crawford JM, Flotte TR. Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors. Gene Ther. 8(17), 1299–1306 (2001).
    • 102. Metz R, DiCola M, Kurihara T et al. Mode of action of RNA/DNA oligonucleotides. Chest 121(3), 91S–97S (2002).
    • 103. Chen Y-T, Miao K, Zhou L, Xiong W-N. Stem cell therapy for chronic obstructive pulmonary disease. Chin. Med. J. (Engl.). 134(13), 1535–1545 (2021).
    • 104. Sankar V. Proniosomes as carrier for the sustained delivery of salbutamol. Indian Drugs 48(8), 22–32 (2011).
    • 105. Calvert BA, Ryan Firth AL. Application of iPSC to modelling of respiratory diseases. Adv. Exp. Med. Biol. 1237, 1–16 (2020).
    • 106. Toraldo DM, Toraldo S, Conte L. The clinical use of stem cell research in chronic obstructive pulmonary disease: a critical analysis of current policies. J. Clin. Med. Res. 10(9), 671–678 (2018).
    • 107. Laffey JG, Kavanagh BP. Negative trials in critical care: why most research is probably wrong. Lancet Respir. Med. 6(9), 659–660 (2018).
    • 108. Midori Okabe MD. Beyond the limitation of randomized controlled trials (RCTs)-current drug repositioning by using human induced pluripotent stem (iPS) cells technology- [Internet]. Scientific Communication and Education. http://biorxiv.org/lookup/doi/10.1101/111435
    • 109. Sui B-D, Zheng C-X, Li M, Jin Y, Hu C-H. Epigenetic regulation of mesenchymal stem cell homeostasis. Trends Cell Biol. 30(2), 97–116 (2020).
    • 110. Liu A, Liu L, Chen S et al. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J. Cell. Physiol. 228(6), 1270–1283 (2013).
    • 111. Muralidharan P, Hayes D, Mansour HM. Dry powder inhalers in COPD, lung inflammation and pulmonary infections. Expert Opin. Drug Deliv. 12(6), 947–962 (2015).
    • 112. Willis L, Hayes D, Mansour HM. Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung 190(3), 251–262 (2012).