We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Prevention of abdominal adhesion by a polycaprolactone/phospholipid hybrid film containing quercetin and silver nanoparticles

    Reza Hosseinpour-Moghadam

    Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran

    ,
    Shahram Rabbani

    Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, 14155-6153, Iran

    ,
    Arash Mahboubi

    Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran

    ,
    Sayyed Abbas Tabatabai

    Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran

    &
    Azadeh Haeri

    *Author for correspondence:

    E-mail Address: a_haeri@sbmu.ac.ir

    Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran

    Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 14155-6153, Iran

    Published Online:https://doi.org/10.2217/nnm-2021-0209

    Aim: To develop quercetin-loaded poly(caprolactone) (PCL)/soybean phosphatidylcholine (PC) films coated with silver (Ag) to prevent the formation of postoperative adhesions (POA). Materials & methods: Films were prepared using the solvent casting method, coated with Ag, and underwent in vitro tests. In vivo studies were conducted employing an animal model of sidewall defect and cecum abrasion. Results: Films showed sustained release behavior of quercetin and Ag. Coating films with Ag improved their antimicrobial activity. In vivo studies confirmed superior antiadhesion properties of films compared with the control groups evaluated by gross observation, histochemical staining and immunohistochemistry analyses. Conclusion: Ag-Q-PCL-PC films are a potential candidate to prevent POA by acting as a sustained release delivery system and physical barrier.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. 17(41), 4545 (2011).
    • 2. Brüggmann D, Tchartchian G, Wallwiener M, Münstedt K, Tinneberg H-R, Hackethal A. Intra-abdominal adhesions: definition, origin, significance in surgical practice, and treatment options. Dtsch. Arztebl. Int. 107(44), 769 (2010).
    • 3. Corona R, Verguts J, Schonman R, Binda MM, Mailova K, Koninckx PR. Postoperative inflammation in the abdominal cavity increases adhesion formation in a laparoscopic mouse model. Int. J. Fertil. Steril. 95(4), 1224–1228 (2011).
    • 4. Binnebösel M, Klink CD, Serno J et al. Chronological evaluation of inflammatory mediators during peritoneal adhesion formation using a rat model. Langenbeck's Arch. Surg. 396(3), 371–378 (2011).
    • 5. Atta HM. Prevention of peritoneal adhesions: a promising role for gene therapy. World J. Gastroenterol. 17(46), 5049 (2011).
    • 6. Kamel RM. Prevention of postoperative peritoneal adhesions. Eur. J. Obstet. Gynecol. Reprod. Biol. 150(2), 111–118 (2010). • Discusses different surgical strategies, adjuvant materials and recommendations for surgeons to minimize postoperative adhesions.
    • 7. Pryor HI II, O'Doherty E, Hart A et al. Poly (glycerol sebacate) films prevent postoperative adhesions and allow laparoscopic placement. JAMA Surg. 146(3), 490–497 (2009).
    • 8. Lalountas M, Ballas K, Michalakis A et al. Postoperative adhesion prevention using a statin-containing cellulose film in an experimental model. Br. J. Surg. 99(3), 423–429 (2012).
    • 9. Li J, Feng X, Liu B et al. Polymer materials for prevention of postoperative adhesion. Acta Biomater. 61, 21–40 (2017). • Reviews synthetic and natural polymeric physical barriers for prevention of postoperative adhesions.
    • 10. Diamond MP, Burns EL, Accomando B, Mian S, Holmdahl L. Seprafilm® adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 9(3), 237–245 (2012).
    • 11. Mohamed RM, Yusoh K. A review on the recent research of polycaprolactone (PCL). Adv. Mat. Res. 1134, 249 (2015).
    • 12. Yao Y, Wang J, Cui Y et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater. 10(6), 2739–2749 (2014).
    • 13. Zhang J, Liu H, Xu H et al. Molecular weight-modulated electrospun poly (ε-caprolactone) membranes for postoperative adhesion prevention. RSC Adv. 4(79), 41696–41704 (2014).
    • 14. Xue B, Wang Y, Tang X et al. Biodegradable self-assembled MPEG-PCL micelles for hydrophobic oridonin delivery in vitro. J. Biomed. Nanotechnol. 8(1), 80–89 (2012).
    • 15. Chen S-H, Chen C-H, Fong YT, Chen J-P. Prevention of peritendinous adhesions with electrospun chitosan-grafted polycaprolactone nanofibrous membranes. Acta Biomater. 10(12), 4971–4982 (2014).
    • 16. Ar'rajab A, Ahrén B, Rozga J, Bengmark S. Phosphatidylcholine prevents postoperative peritoneal adhesions: an experimental study in the rat. J. Surg. Res. 50(3), 212–215 (1991).
    • 17. Irkorucu O, Ferahköşe Z, Memiş L, Ekinci Ö, Akın M. Reduction of postsurgical adhesions in a rat model: a comparative study. Clinics 64(2), 143–148 (2009).
    • 18. D'andrea G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106, 256–271 (2015). • Reviews the main therapeutic applications of quercetin, focusing on molecular and cellular bases.
    • 19. Güney G, Kaya C, Oto G, Yıldırım S, Özdemir H, Tokmak A. Effects of quercetin and surgicel for preventing adhesions after gynecological surgery: a rat uterine horn model. J. Obstet. Gynaecol. Res. 43(1), 179–184 (2017).
    • 20. Rich GT, Buchweitz M, Winterbone MS, Kroon PA, Wilde PJ. Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients 9(2), 111 (2017).
    • 21. Wang H, Cheng M, Hu J, Wang C, Xu S, Han CC. Preparation and optimization of silver nanoparticles embedded electrospun membrane for implant associated infections prevention. ACS Appl. Mater. Interfaces 5(21), 11014–11021 (2013). • Reviews the synthesis, biological properties and current medicinal use of silver nanoparticles.
    • 22. Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int. J. Nanomed. 6, 1833 (2011).
    • 23. Wong KK, Liu X. Silver nanoparticles – the real “silver bullet” in clinical medicine? MedChemComm 1(2), 125–131 (2010).
    • 24. Lim MM, Sultana N. In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds. 3 Biotech 6(2), 211 (2016).
    • 25. Cornard J, Dangleterre L, Lapouge C. Computational and spectroscopic characterization of the molecular and electronic structure of the Pb (II)− Quercetin complex. J. Phys. Chem. A 109(44), 10044–10051 (2005).
    • 26. Kasashima H, Duran A, Cid-Diaz T, Kudo Y, Diaz-Meco MT, Moscat J. An orthotopic implantation mouse model of hepatocellular carcinoma with underlying liver steatosis. STAR Protoc. 1(3), 100185 (2020).
    • 27. Hyoju SK, Morrison S, Gul S et al. Intestinal alkaline phosphatase decreases intraperitoneal adhesion formation. J. Surg. Res. 208, 84–92 (2017).
    • 28. Sultana T, Van Hai H, Abueva C, Kang HJ, Lee S-Y, Lee B-T. TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention. Mater. Sci. Eng. C 102, 12–21 (2019).
    • 29. Schreinemacher MH, Van Barneveld KW, Dikmans RE, Gijbels MJ, Greve JW, Bouvy ND. Coated meshes for hernia repair provide comparable intraperitoneal adhesion prevention. Surg. Endosc. 27(11), 4202–4209 (2013).
    • 30. Brochhausen C, Schmitt VH, Planck CN et al. Current strategies and future perspectives for intraperitoneal adhesion prevention. J. Gastrointest. Surg. 16(6), 1256–1274 (2012).
    • 31. Mao SY, Peng HW, Wei SY, Chen CS, Chen YC. Dynamically and spatially controllable albumin-based hydrogels for the prevention of postoperative adhesion. ACS Biomater. Sci. Eng. 7(7), 3293–3305 (2021).
    • 32. Zhang E, Guo Q, Ji F et al. Thermoresponsive polysaccharide-based composite hydrogel with antibacterial and healing-promoting activities for preventing recurrent adhesion after adhesiolysis. Acta Biomater. 74, 439–453 (2018).
    • 33. Zhang J, Xiao C, Zhang X et al. An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. J. Control. Release 335, 359–368 (2021).
    • 34. Woodruff MA, Hutmacher DW. The return of a forgotten polymer – polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217–1256 (2010).
    • 35. Lo HY, Kuo HT, Huang YY. Application of polycaprolactone as an anti-adhesion biomaterial film. Artif. Organs 34(8), 648–653 (2010).
    • 36. Porto IC, Nascimento TG, Oliveira JM, Freitas PH, Haimeur A, França R. Use of polyphenols as a strategy to prevent bond degradation in the dentin–resin interface. Eur. J. Oral Sci. 126(2), 146–158 (2018).
    • 37. Abideen S, Sankar M. In-vitro screening of antidiabetic and antimicrobial activity against green synthesized AgNO3 using seaweeds. J. Nanomed. Nanotechnol. 10, 2157–7439 (2015).
    • 38. He B, Wang W, Song Y, Ou Y, Zhu J. Structural and physical properties of carboxymethyl cellulose/gelatin films functionalized with antioxidant of bamboo leaves. Int. J. Biol. Macromol. 164, 1649–1656 (2020).
    • 39. Boland GM, Weigel RJ. Formation and prevention of postoperative abdominal adhesions. J. Surg. Res. 132(1), 3–12 (2006).
    • 40. Li J, Xu W, Chen J et al. Highly bioadhesive polymer membrane continuously releases cytostatic and anti-inflammatory drugs for peritoneal adhesion prevention. ACS Biomater. Sci. Eng. 4(6), 2026–2036 (2017).
    • 41. Castilla-Cortázar I, Más-Estellés J, Meseguer-Dueñas JM, Ivirico JE, Marí B, Vidaurre A. Hydrolytic and enzymatic degradation of a poly (ε-caprolactone) network. Polym. Degrad. Stab. 97(8), 1241–1248 (2012).
    • 42. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 357, 1–17 (2018).
    • 43. Chen C-H, Chen S-H, Shalumon K, Chen J-P. Dual functional core–sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion. Acta Biomater. 26, 225–235 (2015).
    • 44. Wong KK, Cheung SO, Huang L et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 4(7), 1129–1135 (2009).
    • 45. Liu S, Zhao J, Ruan H et al. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly (L-lactide) fibrous membrane. Mater. Sci. Eng. C 33(3), 1176–1182 (2013).
    • 46. Fiore M, Sambri A, Zucchini R, Giannini C, Donati DM, De Paolis M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: a systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur. J. Orthop. Surg. Traumatol. 31(2), 201–220 (2021).
    • 47. Xie K, Zhou Z, Guo Y et al. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity. Adv. Healthc. Mater. 8(5), 1801465 (2019).
    • 48. Sharma S, Sanpui P, Chattopadhyay A, Ghosh SS. Fabrication of antibacterial silver nanoparticle – sodium alginate–chitosan composite films. RSC Adv. 2(13), 5837–5843 (2012).
    • 49. Bryaskova R, Pencheva D, Kale GM, Lad U, Kantardjiev T. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. J. Colloid Interface Sci. 349(1), 77–85 (2010).
    • 50. Zan X, Su Z. Polyelectrolyte multilayer films containing silver as antibacterial coatings. Thin Solid Films 518(19), 5478–5482 (2010).
    • 51. Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Technol. 45(6), 1250–1254 (2010).
    • 52. Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 30, 397–407 (2016).
    • 53. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin. Immunol. 20(2), 86–100 (2008).
    • 54. Den Dunnen W, Robinson P, Van Wessel R, Pennings A, Van Leeuwen M, Schakenraad J. Long-term evaluation of degradation and foreign-body reaction of subcutaneously implanted poly (DL-lactide-ϵ-caprolactone). J. Biomed. Mater. Res. 36(3), 337–346 (1997).
    • 55. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 29(7–9), 863–893 (2018).
    • 56. Nagler A, Genina O, Lavelin I, Ohana M, Pines M. Halofuginone, an inhibitor of collagen Type I synthesis, prevents postoperative adhesion formation in the rat uterine horn model. Am. J. Obstet. Gynecol. 180(3), 558–563 (1999).
    • 57. Hu Q, Xia X, Kang X et al. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion. Int. J. Biol. Sci. 17(1), 298–306 (2021).
    • 58. Mcinroy L, Määttä A. Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem. Biophys. Res. Commun. 360(1), 109–114 (2007).