We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Clinical failure of nanoparticles in cancer: mimicking nature's solutions

    Pablo Hernández-Camarero

    Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, Jaén E-23071, Spain

    Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain

    ,
    Víctor Amezcua-Hernández

    Hospital Universitario Virgen de las Nieves, Department Medical Oncology, Av. de las Fuerzas Armadas, 2, E-18014 Granada, Spain

    ,
    Gema Jiménez

    Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain

    Instituto de Investigación Biosanitaria IBS.GRANADA, Granada, E-18071, Spain

    ,
    María A García

    Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain

    Instituto de Investigación Biosanitaria IBS.GRANADA, Granada, E-18071, Spain

    Department of Biochemistry & Molecular Biology & Immunology, University of Granada, Granada, Spain

    ,
    Juan A Marchal

    Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain

    Instituto de Investigación Biosanitaria IBS.GRANADA, Granada, E-18071, Spain

    Department of Human Anatomy & Embryology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, Granada E-18016, Spain

    &
    Macarena Perán

    *Author for correspondence:

    E-mail Address: mperan@ujaen.es

    Department of Health Sciences, University of Jaén, Campus de las Lagunillas SN, Jaén E-23071, Spain

    Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain

    Published Online:https://doi.org/10.2217/nnm-2020-0234

    The use of nanotechnology has become a promising approach in the treatment of cancer. However, most intravenously injected nanoparticles (NPs) do not effectively reach the tumor mass due to the biological barriers in the body. In an attempt to unify clinical criteria and basic research, we have collected the latest studies and described novel alternatives such as the use of NPs covered with cell membranes to increase NP delivery efficiency. Furthermore, we focus on the prospect of using the cell's natural messengers, exosomes, as vehicles to transport anti-cancer agents and we discuss the technical complications involved. Finally, we propose novel approaches to produce engineered exosomes which may overcome such technical limitations in order to achieve a proper anti-cancer nanotherapy.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano 7(9), 7442–7447 (2013). • Interesting study reflecting the modest translational efficiency of nanotechnology to the clinic.
    • 2. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017).
    • 3. Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov. Today 20(9), 1143–1151 (2015).
    • 4. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13(9), 655–672 (2014).
    • 5. Barenholz Y. Doxil®– the first FDA-approved nano-drug: lessons learned. J. Control. Rel. 160(2), 117–134 (2012).
    • 6. You MS, Ryu JK, Choi YH et al. Efficacy of nab-paclitaxel plus gemcitabine and prognostic value of peripheral neuropathy in patients with metastatic pancreatic cancer. Gut Liver 12(6), 728–735 (2018).
    • 7. Moghimi SM, Simberg D. Nanoparticle transport pathways into tumors. J. Nanoparticle Res. 20(6), 169–172 (2018).
    • 8. Nel AE, Mädler L, Velegol D et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009).
    • 9. Velpurisiva P, Gad A, Piel B, Jadia R, Rai P. Nanoparticle design strategies for effective cancer immunotherapy. J. Biomed. 2(2), 64–77 (2017).
    • 10. Fais S, Logozzi M, Lugini L et al. Exosomes: the ideal nanovectors for biodelivery. Biol. Chem. 394(1), 1–15 (2013).
    • 11. Dai J, Escara-Wilke J, Keller JM et al. Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis. J. Exp. Med. 216(12), 2883–2899 (2019).
    • 12. Wang J, Zheng Y, Zhao M. Exosome-based cancer therapy: implication for targeting cancer stem cells. Front. Pharmacol. 7, 533 (2017).
    • 13. Batrakova EV, Kim MS. Development and regulation of exosome-based therapy products. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(5), 744–757 (2016). •• Very interesting study showing relevant considerations to take in mind for an exosome-based therapy.
    • 14. Zhang Y, Li S, Zhou X et al. Construction of a targeting nanoparticle of 3′,3″-bis-peptide-siRNA conjugate/mixed lipid with postinserted DSPE-PEG2000-cRGD. Mol. Pharm. 16(12), 4920–4928 (2019).
    • 15. Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond.) 12(15), 1873–1889 (2017).
    • 16. Cano-Cortes MV, Navarro-Marchal SA, Ruiz-Blas MP, Diaz-Mochon JJ, Marchal JA, Sanchez-Martin RM. A versatile theranostic nanodevice based on an orthogonal bioconjugation strategy for efficient targeted treatment and monitoring of triple negative breast cancer. Nanomedicine 24, 102120 (2020).
    • 17. Kucharczyk K, Florczak A, Deptuch T et al. Drug affinity and targeted delivery: double functionalization of silk spheres for controlled doxorubicin delivery into Her2-positive cancer cells. J. Nanobiotechnol. 18(1), 56–68 (2020).
    • 18. Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2(8), 1001–1014 (2011).
    • 19. Min Y, Roche KC, Tian S et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12(9), 877–882 (2017).
    • 20. Singh MS, Lamprecht A. Cargoing P-gp inhibitors via nanoparticle sensitizes tumor cells against doxorubicin. Int. J. Pharm. 478(2), 745–752 (2015).
    • 21. Gallo J, Long NJ, Aboagye EO. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem. Soc. Rev. 42(19), 7816–7833 (2013).
    • 22. Nima ZA, Mahmood M, Xu Y et al. Circulating tumor cell identification by functionalized silver–gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci. Rep. 4, 4752 (2014).
    • 23. Rüegg C, Reis C, Rafiee S et al. A bio-inspired amplification cascade for the detection of rare cancer cells. Chimia (Aarau). 73(1–2), 63–68 (2019).
    • 24. Jeelani S, Jagat Reddy RC, Maheswaran T, Asokan GS, Dany A, Anand B. Theranostics: a treasured tailor for tomorrow. J. Pharm. Bioallied Sci. 6(Suppl. 1), S6–S8 (2014).
    • 25. Chen WH, Luo GF, Xu XD et al. Cancer-targeted functional gold nanoparticles for apoptosis induction and real-time imaging based on FRET. Nanoscale 6(16), 9531–9535 (2014).
    • 26. Wu W, Klockow JL, Mohanty S et al. Research paper theranostic nanoparticles enhance the response of glioblastomas to radiation. Nanotheranostics 3(4), 299–310 (2019).
    • 27. Wilhelm S, Tavares AJ, Dai Q et al. Supplementary information analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1(5), 1–138 (2016). •• Clearly reflects the low efficiency of nanotechnology in clinical practice, showing very representative accumulation/drug efficiency percentages.
    • 28. Cooper DL, Conder CM, Harirforoosh S. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin. Drug Deliv. 11(10), 1661–1680 (2014).
    • 29. Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid. Nanofluidics 14(1–2), 77–87 (2013).
    • 30. Yao C, Wang P, Zhou L et al. Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging. Anal. Chem. 86(19), 9749–9757 (2014).
    • 31. Zhang L, Cao Z, Li Y, Ella-Menye JR, Bai T, Jiang S. Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6(8), 6681–6686 (2012).
    • 32. Ebrahim Attia AB, Yang C, Tan JPK et al. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials 34(12), 3132–3140 (2013).
    • 33. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9(1), 467–483 (2014).
    • 34. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem. Rev. 115(19), 11147–11190 (2015).
    • 35. Bi J, Areecheewakul S, Li Y et al. MTDH/AEG-1 downregulation using pristimerin-loaded nanoparticles inhibits Fanconi anemia proteins and increases sensitivity to platinum-based chemotherapy. Gynecol. Oncol. 155(2), 349–358 (2019).
    • 36. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J. Control. Rel. 145(3), 182–195 (2010).
    • 37. Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond.) 5(4), 523–528 (2010).
    • 38. Hong M, Zhu S, Jiang Y, Tang G, Pei Y. Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J. Control. Rel. 133(2), 96–102 (2009).
    • 39. Gomes-Da-Silva LC, Fonseca NA, Moura V, Pedroso De Lima MC, Simões S, Moreira JN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc. Chem. Res. 45(7), 1163–1171 (2012).
    • 40. Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 655–677 (2015).
    • 41. van den Berg TK, van der Schoot CE. Innate immune “self” recognition: a role for CD47-SIRPα interactions in hematopoietic stem cell transplantation. Trends Immunol. 29(5), 203–206 (2008).
    • 42. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122), 971–975 (2013).
    • 43. Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med. 1(1), 30–46 (2016).
    • 44. Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9(7), 6655–6674 (2015).
    • 45. Arvizo RR, Miranda OR, Moyano DF et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 6(9), 244374–24379 (2011).
    • 46. Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108(7), 2909–2914 (2011).
    • 47. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65(1), 71–79 (2013).
    • 48. Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26(1), 235–243 (2009).
    • 49. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 63(3), 131–135 (2011).
    • 50. Xu C, Haque F, Jasinski DL, Binzel DW, Shu D, Guo P. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 414, 57–70 (2018).
    • 51. Liu S, Yang J, Jia H, Zhou H, Chen J, Guo T. Virus spike and membrane-lytic mimicking nanoparticles for high cell binding and superior endosomal escape. ACS Appl. Mater. Interfaces 10(28), 23630–23637 (2018).
    • 52. Ma D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale 6(12), 6415–6424 (2014).
    • 53. Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers (Basel). 11(12), 1836–1856 (2019).
    • 54. Hu CMJ, Fang RH, Wang KC et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015).
    • 55. Zhou H, Fan Z, Lemons PK, Cheng H. A facile approach to functionalize cell membrane-coated nanoparticles. Theranostics 6(7), 1012–1022 (2016).
    • 56. Fang RH, Hu CMJ, Chen KNH et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5(19), 8884–8888 (2013).
    • 57. Xiong K, Wei W, Jin Y et al. Biomimetic immuno-magnetosomes for high-performance enrichment of circulating tumor cells. Adv. Mater. 28(36), 7929–7935 (2016).
    • 58. Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv. Mater. 30(23), 1–68 (2018).
    • 59. Parodi A, Quattrocchi N, Van De Ven AL et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8(1), 61–68 (2013).
    • 60. Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30), 4056–4062 (2016).
    • 61. Kanikarla-Marie P, Lam M, Menter DG, Kopetz S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev. 36(2), 235–248 (2017).
    • 62. Luk BT, Jack Hu CM, Fang RH et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6(5), 2730–2737 (2014).
    • 63. Srivastava A, Babu A, Filant J et al. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J. Biomed. Nanotechnol. 12(6), 1159–1173 (2016). •• Very interesting study presenting several advantages of exosomes as natural drug nanocarriers.
    • 64. Fu W, Lei C, Liu S et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat. Commun. 10(1), 4355–4366 (2019).
    • 65. Gomari H, Moghadam MF, Soleimani M, Ghavami M, Khodashenas S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int. J. Nanomed. 14, 5679–5690 (2019).
    • 66. Jhan YY, Prasca-Chamorro D, Palou Zuniga G et al. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Int. J. Pharm. 573, 118802–118817 (2020).
    • 67. Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond.) 11(13), 1745–1756 (2016).
    • 68. Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation. Anal. Biochem. 448(1), 41–49 (2014).
    • 69. Kim MS, Haney MJ, Zhao Y et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12(3), 655–664 (2016).
    • 70. Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front. Genet. 3(APR), 56 (2012).
    • 71. Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip. Rev. RNA3(2), 286–293 (2012). •• Study of considerable interest in which one of the molecular mechanisms used by cells to encapsulate different RNAs is revealed.
    • 72. Bolukbasi MF, Mizrak A, Ozdener GB et al. miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic Acids. 1(2), e10 (2012). •• Very interesting study presenting one of the molecular mechanisms used by cells to encapsulate a specific cargo (mRNA).
    • 73. Smith VL, Jackson L, Schorey JS. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J. Immunol. 195(6), 2722–2730 (2015).
    • 74. Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics 9(4), 1015–1028 (2019).
    • 75. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29(4), 341–345 (2011).
    • 76. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 30(1), 3.22.1–3.22.29 (2006).
    • 77. Krämer-Albers EM, Bretz N, Tenzer S et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics - Clin. Appl. 1(11), 1446–1461 (2007).
    • 78. Ban JJ, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem. Biophys. Res. Commun. 461(1), 76–79 (2015).
    • 79. Chen TS, Arslan F, Yin Y et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 9, 47–57 (2011).
    • 80. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35(4), 851–858 (2017).
    • 81. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110(9), 3234–3244 (2007).
    • 82. Watson DC, Bayik D, Srivatsan A et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105, 195–205 (2016).
    • 83. Helwa I, Cai J, Drewry MD et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 12(1), 170628–170649 (2017).
    • 84. Van Deun J, Mestdagh P, Sormunen R et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3(1), 24858–24871 (2014).
    • 85. Mathivanan S, Lim JWE, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteomics 9(2), 197–208 (2010).
    • 86. Sancho-Albero M, Rubio-Ruiz B, Pérez-López AM et al. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat. Catal. 2(10), 864–872 (2019). • Study of interest reporting that the exosomes secreted by a specific cell type have trophism to another specific cell type.
    • 87. Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Development of exosome surface display technology in living human cells. Biochem. Biophys. Res. Commun. 472(1), 53–59 (2016). • The surface display technology used to obtain engineered exosomes with a desired targeting ligand to direct them against a specific cellular target.
    • 88. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids 2(10), e126 (2013).
    • 89. Haney MJ, Zhao Y, Harrison EB et al. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases. PLoS One 8(4), 61852–61867 (2013).