We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Magnetic polymeric nanobubbles with optimized core size for MRI/ultrasound bimodal molecular imaging of prostate cancer

    Yunkai Zhu‡

    Department of Ultrasound in Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Ying Sun‡

    State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Weiyong Liu

    Department of Ultrasound in Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China

    ,
    Wenbin Guan

    Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China

    ,
    Huanhuan Liu

    Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China

    ,
    Yourong Duan

    *Author for correspondence:

    E-mail Address: yrduan@shsci.org

    State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China

    &
    Yaqing Chen

    **Author for correspondence:

    E-mail Address: chenyaqing@xinhuamed.com.cn

    Department of Ultrasound in Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China

    Published Online:https://doi.org/10.2217/nnm-2020-0188

    Aim: To design MRI/ultrasound (US) dual modality imaging probes with optimized size for prostate cancer imaging by targeting prostate-specific membrane antigen (PSMA). Materials & methods: The PSMA-targeting polypeptide-nanobubbles (PP-NBs) with core size of 400 and 700 nm were fabricated and evaluated. Results: With excellent physical property and specificity, PP-NBs of both core size could image PSMA expression in prostate cancer xenografts. Particularly, 400 nm PP-NBs generated higher PSMA-specific MRI/US dual modality contrast enhancement than 700 nm PP-NBs in correlation with histopathologic findings. Conclusion: Benefit from the smaller core size, 400 nm PP-NBs had higher permeability and specificity than 700 nm PP-NBs, hence producing better PSMA-specific MRI/US dual modality imaging.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 70(1), 7–30 (2020).
    • 2. Swanson GP, Epstein JI, Ha CS, Kryvenko ON. Pathological characteristics of low risk prostate cancer based on totally embedded prostatectomy specimens. Prostate 75(4), 424–429 (2015).
    • 3. Kitzing YX, Prando A, Varol C, Karczmar GS, Maclean F, Oto A. Benign conditions that mimic prostate carcinoma: MR imaging features with histopathologic correlation. Radiographics 36(1), 162–175 (2016).
    • 4. Grey A, Ahmed HU. Multiparametric ultrasound in the diagnosis of prostate cancer. Curr. Opin. Urol. 26(1), 114–119 (2016).
    • 5. Turkbey B, Pinto PA, Mani H et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection--histopathologic correlation. Radiology 255(1), 89–99 (2010).
    • 6. Chatterjee A, Thomas S, Oto A. Prostate MR: pitfalls and benign lesions. Abdom. Radiol. (NY) doi:10.1007/s00261-019-02302-x (.2019) (Epub ahead of print).
    • 7. Rastinehad AR, Turkbey B, Salami SS et al. Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J. Urol. 191(6), 1749–1754 (2014).
    • 8. Guttilla A, Zazzara M, Zattoni F et al. Histopathological characteristics of microfocal prostate cancer detected during systematic prostate biopsy. BJU Int. 116(2), 202–206 (2015).
    • 9. Mai Z, Xiao Y, Yan W et al. Comparison of lesions detected and undetected by template-guided transperineal saturation prostate biopsy. BJU Int. 121(3), 415–420 (2018).
    • 10. Priester A, Natarajan S, Khoshnoodi P et al. Magnetic resonance imaging underestimation of prostate cancer geometry: use of patient specific molds to correlate images with whole mount pathology. J. Urol. 197(2), 320–326 (2017).
    • 11. Qi TY, Chen YQ, Jiang J, Zhu YK, Yao XH, Qi J. Contrast-enhanced transrectal ultrasonography: measurement of prostate cancer tumor size and correlation with radical prostatectomy specimens. Int. J. Urol. 20(11), 1085–1091 (2013).
    • 12. Muller BG, Van Den Bos W, Brausi M et al. Role of multiparametric magnetic resonance imaging (MRI) in focal therapy for prostate cancer: a Delphi consensus project. BJU Int. 114(5), 698–707 (2014).
    • 13. Saji H. In Vivo Molecular imaging. Biol. Pharm. Bull. 40(10), 1605–1615 (2017).
    • 14. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem. 91(3), 528–539 (2004).
    • 15. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3(1), 81–85 (1997).
    • 16. Kasperzyk JL, Finn SP, Flavin R et al. Prostate-specific membrane antigen protein expression in tumor tissue and risk of lethal prostate cancer. Cancer Epidemiol. Biomarkers Prev. 22(12), 2354–2363 (2013).
    • 17. Bravaccini S, Puccetti M, Bocchini M et al. PSMA expression: a potential ally for the pathologist in prostate cancer diagnosis. Sci. Rep. 8(1), 4254 (2018).
    • 18. Schwarzenboeck SM, Rauscher I, Bluemel C et al. PSMA ligands for PET imaging of prostate cancer. J. Nucl. Med. 58(10), 1545–1552 (2017).
    • 19. Werner RA, Derlin T, Lapa C et al. (18)F-labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging. Theranostics 10(1), 1–16 (2020).
    • 20. Junker D, Schafer G, Kobel C et al. Comparison of real-time elastography and multiparametric MRI for prostate cancer detection: a whole-mount step-section analysis. AJR Am. J. Roentgenol. 202(3), W263–269 (2014).
    • 21. Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30(23–24), 3882–3890 (2009). • Fabrication of magnetic microbubbles for MRI/ultrasound dual modality imaging.
    • 22. Yoon YI, Ha SW, Lee HJ. An ultrasound-responsive dual-modal US/T1-MRI contrast agent for potential diagnosis of prostate cancer. J. Magn. Reson. Imaging 48(6), 1610–1616 (2018). •• Fabrication of prostate specific membrane antigen (PSMA) targeting MRI contrast agents loaded microbubbles for PSMA imaging.
    • 23. Wu H, Abenojar EC, Perera R, De Leon AC, An T, Exner AA. Time-intensity-curve analysis and tumor extravasation of nanobubble ultrasound contrast agents. Ultrasound Med. Biol. 45(9), 2502–2514 (2019).
    • 24. Kaneko OF, Willmann JK. Ultrasound for molecular imaging and therapy in cancer. Quant. Imaging Med. Surg. 2(2), 87–97 (2012).
    • 25. Hobbs SK, Monsky WL, Yuan F et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95(8), 4607–4612 (1998).
    • 26. Ding Y, Cao Q, Qian S et al. Optimized anti-prostate-specific membrane antigen single-chain variable fragment-loaded nanobubbles as a novel targeted ultrasound contrast agent for the diagnosis of prostate cancer. J. Ultrasound Med. 39(4), 761–773 (2020).
    • 27. Fan X, Wang L, Guo Y et al. Ultrasonic nanobubbles carrying anti-PSMA nanobody: construction and application in prostate cancer-targeted imaging. PLoS ONE 10(6), e0127419 (2015).
    • 28. Fan X, Guo Y, Wang L, Xiong X, Zhu L, Fang K. Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles. Int. J. Nanomedicine 11, 3939–3950 (2016).
    • 29. Wu M, Zhao H, Guo L et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv. 25(1), 226–240 (2018).
    • 30. Sirsi S, Borden M. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 1(1–2), 3–17 (2009).
    • 31. Yang H, Cai W, Xu L et al. Nanobubble-affibody: novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials 37, 279–288 (2015).
    • 32. Chen Y, Liang Y, Jiang P, Li F, Yu B, Yan F. Lipid/PLGA hybrid microbubbles as a versatile platform for noninvasive image-guided targeted drug delivery. ACS Appl. Mater. Interfaces 11(45), 41842–41852 (2019).
    • 33. Sun Y, Zhu Y, Huang C, Li R, Chen Y, Duan Y. Magnetite loaded polypeptide-PLGA multifunctional microbubbles for dual-mode US/MR imaging. Contrast Media Mol. Imaging 11(2), 146–153 (2016).
    • 34. Niu C, Wang Z, Lu G et al. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34(9), 2307–2317 (2013).
    • 35. Lupold SE, Rodriguez R. Disulfide-constrained peptides that bind to the extracellular portion of the prostate-specific membrane antigen. Mol. Cancer Ther. 3(5), 597–603 (2004). • PSMA targeting polypeptide.
    • 36. Liu X, Kaminski MD, Chen H, Torno M, Taylor L, Rosengart AJ. Synthesis and characterization of highly-magnetic biodegradable poly(d,l-lactide-co-glycolide) nanospheres. J. Control. Release 119(1), 52–58 (2007).
    • 37. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15), 2241–2249 (2011).
    • 38. Zhu Y, Sun Y, Chen Y et al. In vivo molecular MRI imaging of prostate cancer by targeting PSMA with polypeptide-labeled superparamagnetic iron oxide nanoparticles. Int. J. Mol. Sci. 16(5), 9573–9587 (2015).
    • 39. Zhang J, Li B, Yang W, Li J. Synthesis of magnetic Fe3O4@hierarchical hollow silica nanospheres for efficient removal of methylene blue from aqueous solutions. Ind. Eng. Chem. Res. 53(16), 10629–10636 (2014).
    • 40. Poselt E, Kloust H, Tromsdorf U et al. Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T(2)-weighted spin-echo imaging. ACS Nano 6(2), 1619–1624 (2012). • Correlation between nanoparticle core size and transverse relaxation rate.
    • 41. Jung AJ, Westphalen AC. Imaging prostate cancer. Radiol. Clin. North Am. 50(6), 1043–1059 (2012).
    • 42. Monsky WL, Fukumura D, Gohongi T et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59(16), 4129–4135 (1999). •• Correlation between nanoparticle core size and permeability.
    • 43. Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater. Sci. 7(2), 461–471 (2019).
    • 44. Wu H, Rognin NG, Krupka TM et al. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med. Biol. 39(11), 2137–2146 (2013).
    • 45. Yin T, Wang P, Zheng R et al. Nanobubbles for enhanced ultrasound imaging of tumors. Int. J. Nanomedicine 7, 895–904 (2012).
    • 46. Ho YJ, Li JP, Fan CH, Liu HL, Yeh CK. Ultrasound in tumor immunotherapy: current status and future developments. J. Control. Release 323, 12–23 (2020).