We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Safety considerations for nanoparticle gene delivery in pediatric brain tumors

    Kathryn M Luly

    Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    ,
    John Choi

    Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    ,
    Yuan Rui

    Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    ,
    Jordan J Green

    *Author for correspondence:

    E-mail Address: green@jhu.edu

    Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    Department of Ophthalmology & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    Department of Materials Science & Engineering & Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21287, USA

    Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    &
    Eric M Jackson

    **Author for correspondence:

    E-mail Address: ejackson@jhmi.edu

    Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

    Published Online:https://doi.org/10.2217/nnm-2020-0110

    Current standard of care for many CNS tumors involves surgical resection followed by chemotherapy and/or radiation. Some pediatric brain tumor types are infiltrative and diffuse in nature, which reduces the role for surgery. Furthermore, children are extremely vulnerable to neurological sequelae from surgery and radiation therapy, thus alternative approaches are in critical need. As molecular targets underlying various cancers become more clearly defined, there is an increasing push for targeted gene therapies. Viral vectors and nonviral nanoparticles have been thoroughly investigated for gene delivery and show promise as vectors for gene therapy for pediatric brain cancer. Here, we review inorganic and organic materials in development for nanoparticle gene delivery to the brain with a particular focus on safety.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Gondi V, Yock TI, Mehta MP. Proton therapy for paediatric CNS tumours – improving treatment-related outcomes. Nat. Rev. Neurol. 12(6), 334–345 (2016).
    • 2. Johnson KJ, Cullen J, Barnholtz-Sloan JS et al. Cchildhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol. Biomarkers Prev. 23(12), 2716–2736 (2014).
    • 3. Ward E, Desantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 64(2), 83–103 (2014).
    • 4. Warren KE. Diffuse intrinsic pontine glioma: poised for progress. Front. Oncol. 2, 205 (2012).
    • 5. Park JH, Rivière I, Gonen M et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378(5), 449–459 (2018).
    • 6. Hitti FL, Gonzalez-Alegre P, Lucas TH. Gene therapy for neurologic disease: a neurosurgical review. World Neurosurg. 121, 261–273 (2019).
    • 7. Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 48(2), 179–188 (2012).
    • 8. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18(5), 358–378 (2019). • Discusses recent advances in adeno-associated virus therapeutics highlighting advantages and disadvantages of viral gene delivery.
    • 9. Li L, Liu S, Han D, Tang B, Ma J. Delivery and biosafety of oncolytic virotherapy. Front. Oncol. 10, 475–475 (2020).
    • 10. Ding Y, Jiang Z, Saha K et al. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 22(6), 1075–1083 (2014).
    • 11. Shen L, Li B, Qiao Y. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 11(2), 324–324 (2018).
    • 12. Soenen SJH, Himmelreich U, Nuytten N, De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32(1), 195–205 (2011).
    • 13. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.) 3(5), 703–717 (2008). • Describes clearance mechanisms of various types of nanoparticles.
    • 14. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(4), 12–12 (2017).
    • 15. Huo T, Barth RF, Yang W et al. Preparation, biodistribution and neurotoxicity of liposomal cisplatin following convection enhanced delivery in normal and F98 glioma bearing rats. PLoS One 7(11), e48752 (2012).
    • 16. Huang J-Y, Lu Y-M, Wang H et al. The effect of lipid nanoparticle PEGylation on neuroinflammatory response in mouse brain. Biomaterials 34(32), 7960–7970 (2013).
    • 17. Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery. ACS Nano 13(4), 3754–3782 (2019).
    • 18. Ciolkowski M, Petersen JF, Ficker M et al. Surface modification of PAMAM dendrimer improves its biocompatibility. Nanomedicine 8(6), 815–817 (2012).
    • 19. Wang S, Li Y, Fan J et al. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 35(26), 7588–7597 (2014).
    • 20. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3), 1377–1397 (2011).
    • 21. Lee Y, Mo H, Koo H et al. Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug. Chem. 18(1), 13–18 (2007).
    • 22. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11(6), 990–995 (2005).
    • 23. Liu Y, Li Y, Keskin D, Shi L. Poly(β-amino esters): synthesis, formulations, and their biomedical applications. Adv. Healthc. Mater. 8(2), 1801359–1801359 (2018).
    • 24. Udaka YT, Packer RJ. Pediatric brain tumors. Neurol. Clin. 36(3), 533–556 (2018). • Overview of pediatric brain tumors describe incidence and classification systems of various tumor types.
    • 25. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Histological System, Revised Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer, France (2016).
    • 26. Taylor MD, Northcott PA, Korshunov A et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123(4), 465–472 (2012).
    • 27. Packer RJ, Gajjar A, Vezina G et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 24(25), 4202–4208 (2006).
    • 28. Biegel JA. Molecular genetics of atypical teratoid/rhabdoid tumors. Neurosurg. Focus 20(1), E11 (2006).
    • 29. Chi SN, Zimmerman MA, Yao X et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J. Clin. Oncol. 27(3), 385–389 (2009).
    • 30. Braunstein S, Raleigh D, Bindra R, Mueller S, Haas-Kogan D. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J. Neuro Oncol. 134(3), 541–549 (2017).
    • 31. Roujeau T, Machado G, Garnett MR et al. Stereotactic biopsy of diffuse pontine lesions in children. J. Neurosurg. 107(Suppl. 1), 1–4 (2007).
    • 32. Dang M, Phillips PC. Pediatric brain tumors. Continuum (Minneap. Minn.) 23(6), 1727–1757 (2017).
    • 33. Liu K-W, Pajtler KW, Worst BC, Pfister SM, Wechsler-Reya RJ. Molecular mechanisms and therapeutic targets in pediatric brain tumors. Sci. Signal. 10(470), eaaf7593 (2017). •• Overview of the molecular basis of common pediatric tumors give insight into potential therapeutic targets.
    • 34. Puget S, Philippe C, Bax DA et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 7(2), e30313–e30313 (2012).
    • 35. Wetmore C, Boyett J, Li S et al. Alisertib is active as single agent in recurrent atypical teratoid rhabdoid tumors in 4 children. Neuro Oncol. 17(6), 882–888 (2015).
    • 36. Bavle A, Jones J, Lin FY, Malphrus A, Adesina A, Su J. Dramatic clinical and radiographic response to BRAF inhibition in a patient with progressive disseminated optic pathway glioma refractory to MEK inhibition. Pediatr. Hematol. Oncol. 34(4), 254–259 (2017).
    • 37. Smalley E. First AAV gene therapy poised for landmark approval. Nat. Biotechnol. 35(11), 998–999 (2017).
    • 38. Hoy SM. Onasemnogene abeparvovec: first global approval. Drugs 79(11), 1255–1262 (2019).
    • 39. Clinicaltrials.Gov. Search of: Gene Therapy | Brain Cancer (2020). https://clinicaltrials.gov/ct2/results?cond=Brain+Cancer&term=gene+therapy&cntry=&state=&city=&dist=
    • 40. Kramm CM, Rainov NG, Sena-Esteves M et al. Long-term survival in a rodent model of disseminated brain tumors by combined intrathecal delivery of herpes vectors and ganciclovir treatment. Human Gene Ther. 7(16), 1989–1994 (1996).
    • 41. Studebaker AW, Hutzen B, Pierson CR, Russell SJ, Galanis E, Raffel C. Oncolytic measles virus prolongs survival in a murine model of cerebral spinal fluid-disseminated medulloblastoma. Neuro Oncol. 14(4), 459–470 (2012).
    • 42. Studebaker AW, Hutzen B, Pierson CR, Shaffer TA, Raffel C, Jackson EM. Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors. Neuro Oncol. 17(12), 1568–1577 (2015).
    • 43. Studebaker AW, Hutzen BJ, Pierson CR et al. Oncolytic herpes virus rRp450 shows efficacy in orthotopic xenograft group 3/4 medulloblastomas and atypical teratoid/rhabdoid tumors. Mol. Ther. Oncolytics 6, 22–30 (2017).
    • 44. Varela-Guruceaga M, Tejada-Solís S, García-Moure M et al. Oncolytic viruses as therapeutic tools for pediatric brain tumors. Cancers 10(7), 226 (2018).
    • 45. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348(3), 255–256 (2003).
    • 46. Akinc A, Maier MA, Manoharan M et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14(12), 1084–1087 (2019).
    • 47. Jensen SA, Day ES, Ko CH et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5(209), 209ra152 (2013).
    • 48. Dufes C, Uchegbu I, Schatzlein A. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 57(15), 2177–2202 (2005).
    • 49. Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl Acad. Sci. USA 93(10), 4897–4902 (1996).
    • 50. Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces 8(47), 32159–32169 (2016).
    • 51. Li H, Tong Y, Bai L et al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int. J. Biol. Macromol. 107(PartA), 204–211 (2018).
    • 52. Bi C, Wang A, Chu Y et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG–PLGA nanoparticles for Parkinson's disease treatment. Int. J. Nanomedicine 11, 6547–6559 (2016).
    • 53. Zhou J, Patel TR, Fu M, Bertram JP, Saltzman WM. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. Biomaterials 33(2), 583–591 (2012).
    • 54. Boussif O, Lezoualc'h F, Zanta MA et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92(16), 7297–7301 (1995).
    • 55. Hu Y, He Z, Hao Y et al. Kinetic control in assembly of plasmid DNA/polycation complex nanoparticles. ACS Nano 13(9), 10161–10178 (2019).
    • 56. Karlsson J, Rui Y, Kozielski KL et al. Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. Nanoscale 11(42), 20045–20057 (2019). • Emphasizes the safety profile of poly(beta-amino) esters in an in vivo glioblastoma model.
    • 57. Lopez-Bertoni H, Kozielski KL, Rui Y et al. Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell regulating miRNAs inhibit glioblastoma growth and prolong survival. Nano Lett. 18(7), 4086–4094 (2018).
    • 58. Ebrahimkhani S, Vafaee F, Hallal S et al. Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis. Oncol. 2(1), 28 (2018).
    • 59. Lopez-Bertoni H, Kotchetkov IS, Mihelson N et al. A Sox2:miR-486-5p axis regulates survival of GBM cells by inhibiting tumor suppressor networks. Cancer Res. 80(8), 1644 (2020).
    • 60. Mangraviti A, Tzeng SY, Kozielski KL et al. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano 9(2), 1236–1249 (2015).
    • 61. Choi J, Rui Y, Kim J et al. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies. Nanomedicine 23, 102115 (2020). •• Highlights the potential utility of poly(beta-amino) esters in the context of pediatric brain tumors.
    • 62. Tam VH, Sosa C, Liu R, Yao N, Priestley RD. Nanomedicine as a non-invasive strategy for drug delivery across the blood brain barrier. Int. J. Pharm. 515(1–2), 331–342 (2016).
    • 63. Hynynen K, Mcdannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 220(3), 640–646 (2001).
    • 64. Nance E, Timbie K, Miller GW et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood−brain barrier using MRI-guided focused ultrasound. J. Control. Rel. 189, 123–132 (2014).
    • 65. Airan RD, Meyer RA, Ellens NPK et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17(2), 652–659 (2017).
    • 66. Brem H, Piantadosi S, Burger PC et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345(8956), 1008–1012 (1995).
    • 67. Segovia N, Pont M, Oliva N, Ramos V, Borrós S, Artzi N. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer. Adv. Healthc. Mater. 4(2), 271–280 (2015).
    • 68. Conde J, Oliva N, Zhang Y, Artzi N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15(10), 1128–1138 (2016).
    • 69. Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A. Improving the brain delivery of chemotherapeutic drugs in childhood brain tumors. Cancers 11(6), 824–824 (2019).
    • 70. Zhou Z, Singh R, Souweidane M. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr. Neuropharmacol. 15(1), 116–128 (2016). •• Overview of convection-enhanced delivery as a delivery mechanism for drugs to the brain with a perspective on obstacles that need to be addressed for improved delivery for diffuse intrinsic pontine glioma.
    • 71. Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol. Rev. 88(4), 1277–1340 (2008).
    • 72. Thorne RG, Lakkaraju A, Rodriguez-Boulan E, Nicholson C. In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc. Natl Acad. Sci. USA 105(24), 8416 (2008).
    • 73. Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103(14), 5567–5572 (2006).
    • 74. Nance EA, Woodworth GF, Sailor KA et al. A Dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4(149), 149ra119 (2012).
    • 75. Demeule M, Currie J-C, Bertrand Y et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J. Neurochem. 106(4), 1534–1544 (2008).
    • 76. Dumont MF, Yadavilli S, Sze RW, Nazarian J, Fernandes R. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors. Int. J. Nanomed. 9, 2581–2595 (2014).
    • 77. Veiseh O, Sun C, Fang C et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res. 69(15), 6200–6207 (2009).
    • 78. Jansen MHA, Van Vuurden DG, Vandertop WP, Kaspers GJL. Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat. Rev. 38(1), 27–35 (2012).
    • 79. Menyhárt O, Giangaspero F, Győrffy B. Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J. Hematol. Oncol. 12(1), 29–29 (2019).
    • 80. Inakoshi H, Kayamori R, Tsuchida E et al. Multivariate analysis of dissemination relapse of medulloblastoma and estimation of its time parameter for craniospinal irradiation. Radiat. Med. 21(1), 37–45 (2003).
    • 81. Song E, Mao T, Dong H et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577(7792), 689–694 (2020).
    • 82. Mathios D, Kim JE, Mangraviti A et al. Anti–PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci. Transl. Med. 8(370), 370ra180–370ra180 (2016).