We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

pH-responsive PEG-chitosan/iron oxide hybrid nanoassemblies for low-power assisted PDT/PTT combination therapy

    Guiyang Zhang

    School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, PR China

    ,
    Huilin Gou

    School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, PR China

    ,
    Yanfeng Liu

    School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, PR China

    ,
    Kai Xi

    *Author for correspondence: Tel.: +86 25 89682304;

    E-mail Address: xikai@nju.edu.cn

    School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, PR China

    ,
    Dechen Jiang

    School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, PR China

    &
    Xudong Jia

    **Author for correspondence: Tel.: +86 25 89683562;

    E-mail Address: jiaxd@nju.edu.cn

    School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, PR China

    Published Online:https://doi.org/10.2217/nnm-2020-0022

    Aim: To develop a hybrid nanoassembly platform using PEG-chitosan/iron oxide nanoparticles for effective low-power assisted photodynamic/photothermal combination therapy. Materials & methods: The hybrid nanoassemblies (NAs) were firstly fabricated by self-assembling chitosan and iron oxide nanoparticles, following which their surfaces were modified with polyethylene glycolated triphenylphosphine and loaded with methylene blue (MB) photosensitizer. The physical characteristics and phototherapy effects of these NAs were evaluated. Results: The formed MB-loaded NAs could produce both heat and singlet oxygen under low-power near-infrared irradiation, which would damage the cancer cells. Delivered by intravenous injection, the MB-loaded NAs showed high tendency to accumulate at the tumor sites, which would lead to effective cancer treatment under controlled photoexcitation without damaging the normal tissues. Conclusion: The proposed low-power assisted simultaneous photodynamic/photothermal approach effectively improves treatment efficiency and provides safe and precise treatment option.

    Graphical abstract

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1. Song J , Lin L , Yang Z et al. Self-assembled responsive bilayered vesicles with adjustable oxidative stress for enhanced cancer imaging and therapy. J. Am. Chem. Soc. 141(20), 8158–8170 (2019).
    • 2. Dai Y , Yang Z , Cheng S et al. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Adv. Mater. 30(8), 1704877 (2018).
    • 3. Karwicka M , Pucelik B , Gonet M et al. Effects of photodynamic therapy with redaporfin on tumor oxygenation and blood flow in a lung cancer mouse model. Sci. Rep. 9(1), 1–15 (2019).
    • 4. Sharma SK , Chiang LY , Hamblin MR . Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine 6(10), 1813–1825 (2011).
    • 5. Chen H , Gu Z , An H et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 61(12), 1503–1552 (2018).
    • 6. Menon JU , Jadeja P , Tambe P , Vu K , Yuan B , Nguyen KT . Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 3(3), 152 (2013).
    • 7. Dolmans DE , Fukumura D , Jain RK . Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380–387 (2003).
    • 8. Chitgupi U , Qin Y , Lovell JF . Targeted nanomaterials for phototherapy. Nanotheranostics 1(1), 38 (2017).
    • 9. Cheng L , Wang C , Feng L , Yang K , Liu Z . Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014).
    • 10. Wang S , Huang P , Nie L et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 25(22), 3055–3061 (2013).
    • 11. Hayashi K , Nakamura M , Miki H et al. Photostable iodinated silica/porphyrin hybrid nanoparticles with heavy-atom effect for wide-field photodynamic/photothermal therapy using single light source. Adv. Funct. Mater. 24(4), 503–513 (2014).
    • 12. Wang K , Zhang Y , Wang J et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 6(1), 1–11 (2016).
    • 13. Dai Y , Su J , Wu K et al. Multifunctional thermosensitive liposomes based on natural phase-change material: near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl. Mater. Interfaces 11(11), 10540–10553 (2019).
    • 14. Younis MR , Wang C , An R et al. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 13(2), 2544–2557 (2019).
    • 15. Hsiao M-H , Mu Q , Stephen ZR , Fang C , Zhang M . Hexanoyl-chitosan-PEG copolymer coated iron oxide nanoparticles for hydrophobic drug delivery. ACS Macro Lett. 4(4), 403–407 (2015).
    • 16. Dash M , Chiellini F , Ottenbrite R , Chiellini E . Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36(8), 981–1014 (2011).
    • 17. Khor E , Lim LY . Implantable applications of chitin and chitosan. Biomaterials 24(13), 2339–2349 (2003).
    • 18. Prabaharan M , Mano JF . Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12(1), 41–57 (2004).
    • 19. Mao S , Sun W , Kissel T . Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 62(1), 12–27 (2010).
    • 20. Bhattarai N , Gunn J , Zhang M . Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62(1), 83–99 (2010).
    • 21. Lepeltier E , Loretz B , Desmaële D et al. Squalenoylation of chitosan: a platform for drug delivery? Biomacromolecules 16(9), 2930–2939 (2015).
    • 22. Fu Y , Li Y , Li G et al. Adaptive chitosan hollow microspheres as efficient drug carrier. Biomacromolecules 18(7), 2195–2204 (2017).
    • 23. Huo M , Liu Y , Wang L et al. Redox-sensitive micelles based on O,N-hydroxyethyl chitosan–octylamine conjugates for triggered intracellular delivery of paclitaxel. Mol. Pharm. 13(6), 1750–1762 (2016).
    • 24. Veiseh O , Kievit FM , Ellenbogen RG , Zhang M . Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv. Drug Deliv. Rev. 63(8), 582–596 (2011). •• Summarizes the photodynamic therapy for cancer.
    • 25. Laurent S , Forge D , Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008).
    • 26. Chu M , Shao Y , Peng J et al. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34(16), 4078–4088 (2013).
    • 27. Jokerst JV , Lobovkina T , Zare RN , Gambhir SS . Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4), 715–728 (2011).
    • 28. Piao JG , Wang L , Gao F et al. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8(10), 10414–10425 (2014).
    • 29. Ma Y , Sadoqi M , Shao J . Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid. Int. J. Pharm. 436(1–2), 25–31 (2012).
    • 30. García I , Sánchez-Iglesias A , Henriksen-Lacey M et al. Glycans as biofunctional ligands for gold nanorods: stability and targeting in protein-rich media. J. Am. Chem. Soc. 137(10), 3686–3692 (2015).
    • 31. Laurent S , Forge D , Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physico-chemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008).
    • 32. Lin J , Li Y , Li Y et al. Drug/dye-loaded, multifunctional PEG–chitosan–iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS Appl. Mater. Interfaces 7(22), 11908–11920 (2015).
    • 33. Hou Z , Zhan C , Jiang Q et al. Both FA-and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Res. Lett. 6(1), 1–11 (2011).
    • 34. Jia M , Li Y , Yang X et al. Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl. Mater. Interfaces 6(14), 11413–11423 (2014).
    • 35. Yoo D , Jeong H , Preihs C et al. Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew. Chem. Int. Ed. 51(50), 12482–12485 (2012).
    • 36. Yoo MK , Park IK , Lim HT et al. Folate–PEG–superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater. 8(8), 3005–3013 (2012). •• Illustrates the synthesis of PEGylated functional materials.
    • 37. Wang J , Zhao G , Li Y , Liu X , Hou P . Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl. Microbiol. Biotechnol. 97(2), 681–692 (2013).
    • 38. Chen JP , Yang PC , Ma YH , Wu T . Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr. Polym. 84(1), 364–372 (2011).
    • 39. Dong Q , Wang X , Hu X et al. Simultaneous application of photothermal therapy and an anti-inflammatory prodrug using pyrene–aspirin-loaded gold nanorod graphitic nanocapsules. Angew. Chem. 57(1), 177–181 (2018).
    • 40. Jang B , Park JY , Tung CH , Kim IH , Choi Y . Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo . ACS Nano 5(2), 1086–1094 (2011).
    • 41. Zhu X , Feng W , Chang J et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2015).
    • 42. Wang L , Liu G , Wang X , Hu J , Zhang G , Liu S . Acid-disintegratable polymersomes of pH-responsive amphiphilic di-block copolymers for intracellular drug delivery. Macromolecules 48(19), 7262–7272 (2015).
    • 43. Yang G , Xu L , Chao Y et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8(1), 1–13 (2017).
    • 44. Zhang Y , Wang F , Liu C et al. Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018).
    • 45. Jung HS , Verwilst P , Sharma A , Shin J , Sessler JL , Kim JS . Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47(7), 2280–2297 (2018).
    • 46. Li JC , Xie C , Huang JG , Jiang YY , Miao QQ , Pu KY . Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew. Chem. Int. Ed. 57(15), 3995–3998 (2018).
    • 47. Liu G , Zou J , Tang Q et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photother-mal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 9(46), 40077–40086 (2017).
    • 48. Jang Y , Kim S , Lee S , Yoon CM , Lee I , Jang J . Graphene oxide wrapped SiO2/TiO2 hollow nanoparticles loaded with photosensitizer for photothermal and photodynamic combination therapy. Chem. Eur. J. 23(15), 3719–3727 (2017).
    • 49. Yang X , Wang D , Shi Y et al. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photother-mal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces 10(15), 12431–12440 (2018).
    • 50. Wang Y , Cai D , Wu H et al. Functionalized Cu3BiS3 nanoparticles for dual-modal imaging and targeted photother-mal/photodynamic therapy. Nanoscale 10(9), 4452–4462 (2018).
    • 51. Yin W , Bao T , Zhang X et al. Biodegradable MoOx nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale 10(3), 1517–1531 (2018).
    • 52. Liu X , Yang T , Han Y et al. In situ growth of CuS/SiO2-based multifunctional nanotherapeutic agents for combined photodynamic/photothermal cancer therapy . ACS Appl. Mater. Interfaces 10(37), 31008–31018 (2018).
    • 53. Tran TH , Nguyen HT , Phuong Tran TT et al. Combined photothermal and photodynamic therapy by hyaluronic acid-decorated polypyrrole nanoparticles. Nanomedicine 12(12), 1511–1523 (2017).
    • 54. Wang X , Ouyang X , Chen J , Hu Y , Sun X , Yu Z . Nanoparticulate photosensitizer decorated with hyaluronic acid for photodynamic/photothermal cancer targeting therapy. Nanomedicine 14(2), 151–167 (2019). •• Summary of nanotherapeutics for photodynamic/photothermal cancer therapy.