We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Lignin-graft-PLGA drug-delivery system improves efficacy of MEK1/2 inhibitors in triple-negative breast cancer cell line

    C Ethan Byrne

    Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA

    ,
    Carlos E Astete

    Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA

    ,
    Manibarathi Vaithiyanathan

    Cain Department of Chemical Engineering, Louisiana State University, LA 70803, USA

    ,
    Adam T Melvin

    Cain Department of Chemical Engineering, Louisiana State University, LA 70803, USA

    ,
    Mahsa Moradipour

    Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA

    ,
    Stephen E Rankin

    Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA

    ,
    Barbara L Knutson

    Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA

    ,
    Cristina M Sabliov

    Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA

    &
    Elizabeth C Martin

    *Author for correspondence:

    E-mail Address: emart93@lsu.edu

    Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA

    Published Online:https://doi.org/10.2217/nnm-2020-0010

    Aim: Few targeted therapies are available for triple-negative breast cancer (TNBC) patients. Here, we propose a novel alkaline-lignin-conjugated-poly(lactic-co-glycolic acid) (L-PLGA) nanoparticle drug delivery system to improve the efficacy of targeted therapies. Materials & methods: L-PLGA nanoparticles (NPs) loaded with the MEK1/2 inhibitor GDC-0623 were characterized, tested in vitro on MDA-MB-231 TNBC cell line and compared with loaded PLGA NPs. Results: Loaded L-PLGA NPs were less than half the size of PLGA NPs, had slower drug release and improved the efficacy of GDC-0623 when tested in vitro. We demonstrated that GDC-0623 reversed epithelial-to-mesenchymal transition in TNBC. Conclusion: Our findings indicate that L-PLGA NPs are superior to PLGA NPs in delivering GDC-0623 to cancer cells for improved efficacy in vitro.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Breastcancer.org. Breast cancer information and support. www.breastcancer.org/ Google Scholar
    • 2. Berry DA , Cirrincione C , Henderson IC et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295(14), 1658–1667 (2006). Crossref, Medline, CASGoogle Scholar
    • 3. Higgins MJ , Baselga J . Targeted therapies for breast cancer. J. Clin. Invest. 121(10), 3797–3803 (2011). Crossref, Medline, CASGoogle Scholar
    • 4. O’Rorke MA , Murray LJ , Brand JS , Bhoo-Pathy N . The value of adjuvant radiotherapy on survival and recurrence in triple-negative breast cancer: a systematic review and meta-analysis of 5507 patients. Cancer Treat. Rev. 47, 12–21 (2016). Crossref, MedlineGoogle Scholar
    • 5. Hershman DL , Till C , Wright JD et al. Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in Southwest Oncology Group clinical trials. J. Clin. Oncol. 34(25), 3014–3022 (2016). Crossref, Medline, CASGoogle Scholar
    • 6. Chao C , Page JH , Yang SJ , Rodriguez R , Huynh J , Chia VM . History of chronic comorbidity and risk of chemotherapy-induced febrile neutropenia in cancer patients not receiving G-CSF prophylaxis. Ann. Oncol. 25(9), 1821–1829 (2014). Crossref, Medline, CASGoogle Scholar
    • 7. Bradshaw PT , Stevens J , Khankari N , Teitelbaum SL , Neugut AI , Gammon MD . Cardiovascular disease mortality among breast cancer survivors. Epidemiology 27(1), 6–13 (2016). Crossref, MedlineGoogle Scholar
    • 8. de Boer-Dennert M , de Wit R , Schmitz PI et al. Patient perceptions of the side-effects of chemotherapy: the influence of 5HT3 antagonists. Br. J. Cancer 76(8), 1055–1061 (1997). Crossref, Medline, CASGoogle Scholar
    • 9. Tan KX , Danquah MK , Sidhu A , Ongkudon CM , Lau SY . Towards targeted cancer therapy: aptamer or oncolytic virus? Eur. J. Pharm. Sci. 96, 8–19 (2017). Crossref, Medline, CASGoogle Scholar
    • 10. Zajac M , Muszalska I , Jelinska A . New molecular targets of anticancer therapy – current status and perspectives. Curr. Med. Chem. 23(37), 4176–4220 (2016). Crossref, Medline, CASGoogle Scholar
    • 11. Oldham RK , Dillman RO . Monoclonal antibodies in cancer therapy: 25 years of progress. J. Clin. Oncol. 26(11), 1774–1777 (2008). Crossref, MedlineGoogle Scholar
    • 12. Iannello A , Ahmad A . Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 24(4), 487–499 (2005). Crossref, Medline, CASGoogle Scholar
    • 13. El-Khoueiry A , Kurkjian C , Semrad T et al. Abstract B75: a first in-human Phase I study to evaluate the MEK1/2 inhibitor GDC-0623 in patients with advanced solid tumors. Mol. Cancer Ther. 12(Suppl. 11), B75–B75 (2013). CrossrefGoogle Scholar
    • 14. Heidorn SJ , Milagre C , Whittaker S et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140(2), 209–221 (2010). Crossref, Medline, CASGoogle Scholar
    • 15. Rajalingam K , Schreck R , Rapp UR Albert S . RAS oncogenes and their downstream targets. Biochim. Biophys. Acta 1773(8), 1177–1195 (2007). Crossref, Medline, CASGoogle Scholar
    • 16. Bos JL . RAS oncogenes in human cancer: a review. Cancer Res. 49(17), 4682–4689 (1989). Medline, CASGoogle Scholar
    • 17. Singh H , Longo DL , Chabner BA . Improving prospects for targeting RAS. J. Clin. Oncol. 33(31), 3650–3659 (2015). Crossref, Medline, CASGoogle Scholar
    • 18. Sale MJ , Cook SJ . Intrinsic and acquired resistance to MEK1/2 inhibitors in cancer. Biochem. Soc. Trans. 42(4), 776–783 (2014). Crossref, Medline, CASGoogle Scholar
    • 19. Adeyinka A , Nui Y , Cherlet T , Snell L , Watson PH , Murphy LC . Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin. Cancer Res. 8(6), 1747–1753 (2002). Medline, CASGoogle Scholar
    • 20. Thomas RS , Sarwar N , Phoenix F , Coombes RC , Ali S . Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J. Mol. Endocrinol. 40(4), 173–184 (2008). Crossref, Medline, CASGoogle Scholar
    • 21. Kim R-K , Suh Y , Yoo K-C et al. Activation of KRAS promotes the mesenchymal features of basal-type breast cancer. Exp. Mol. Med. 47, e137 (2015). Crossref, MedlineGoogle Scholar
    • 22. Hay M , Thomas DW , Craighead JL , Economides C , Rosenthal J . Clinical development success rates for investigational drugs. Nat. Biotechnol. 32(1), 40–51 (2014). Crossref, Medline, CASGoogle Scholar
    • 23. Blagosklonny MV . Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol. Sci. 26(2), 77–81 (2005). Crossref, Medline, CASGoogle Scholar
    • 24. Liu D , Auguste DT . Cancer targeted therapeutics: from molecules to drug delivery vehicles. J. Control. Rel. 219, 632–643 (2015). Crossref, Medline, CASGoogle Scholar
    • 25. Suh MS , Shen J , Kuhn LT , Burgess DJ . Layer-by-layer nanoparticle platform for cancer active targeting. Int. J. Pharm. 517(1–2), 58–66 (2017). Crossref, Medline, CASGoogle Scholar
    • 26. Gao J , Zhong W , He J et al. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int. J. Pharm. 374(1–2), 145–152 (2009). Crossref, Medline, CASGoogle Scholar
    • 27. Cerqueira BBS , Lasham A , Shelling AN , Al-Kassas R . Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C Mater. Biol. Appl. 76, 593–600 (2017). Crossref, Medline, CASGoogle Scholar
    • 28. Blanco E , Shen H , Ferrari M . Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). Crossref, Medline, CASGoogle Scholar
    • 29. Danhier F , Feron O , Préat V . To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Rel. 148(2), 135–146 (2010). Crossref, Medline, CASGoogle Scholar
    • 30. Bae YH . Drug targeting and tumor heterogeneity. J. Control. Rel. 133(1), 2–3 (2009). Crossref, Medline, CASGoogle Scholar
    • 31. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1(1), 27–31 (1995). Crossref, Medline, CASGoogle Scholar
    • 32. Matsumura Y , Maeda H . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Pt 1), 6387–6392 (1986). Medline, CASGoogle Scholar
    • 33. Maeda H , Bharate GY , Daruwalla J . Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 71(3), 409–419 (2009). Crossref, Medline, CASGoogle Scholar
    • 34. Sims LB , Curtis LT , Frieboes HB , Steinbach-Rankins JM . Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer. J. Nanobiotechnol. 14, 33 (2016). Crossref, MedlineGoogle Scholar
    • 35. Klapiszewski Ł , Zdarta J , Antecka K et al. Magnetite nanoparticles conjugated with lignin: a physicochemical and magnetic study. Appl. Surf. Sci. 422, 94–103 (2017). • Lignin conjugated to magnetite nanoparticles improved thermal and electrokinetic properties.Crossref, CASGoogle Scholar
    • 36. Liu K , Zheng D , Lei H et al. Development of novel lignin-based targeted polymeric nanoparticle platform for efficient delivery of anticancer drugs. ACS Biomater. Sci. Eng. 4(5), 1730–1737 (2018). •• Alkaline lignin was conjugated to folic acid-polyethylene glycol to make a novel nanoparticle drug-delivery systems. The nanoparticle drug-delivery systems improved the efficacy of the targeted therapy hydroxyl camptothecin.Medline, CASGoogle Scholar
    • 37. Wang X , Zhou X , Hecht SM . Role of the 20-hydroxyl group in camptothecin binding by the topoisomerase I-DNA binary complex. Biochemistry 38(14), 4374–4381 (1999). Crossref, Medline, CASGoogle Scholar
    • 38. Muse ES , Patel NR , Astete CE , Damann KE , Sabliov CM . Surface association and uptake of poly(lactic-co-glycolic) acid nanoparticles by Aspergillus flavus . Ther. Deliv. 5(11), 1179–1190 (2014). Crossref, Medline, CASGoogle Scholar
    • 39. Tabaei SR , Choi J-H , Haw Zan G , Zhdanov VP , Cho N-J . Solvent-assisted lipid bilayer formation on silicon dioxide and gold. Langmuir 30(34), 10363–10373 (2014). Crossref, Medline, CASGoogle Scholar
    • 40. Cho N-J , Frank CW , Kasemo B , Höök F . Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 5(6), 1096–1106 (2010). Crossref, Medline, CASGoogle Scholar
    • 41. Patel AR , Frank CW . Quantitative analysis of tethered vesicle assemblies by quartz crystal microbalance with dissipation monitoring: binding dynamics and bound water content. Langmuir 22(18), 7587–7599 (2006). Crossref, Medline, CASGoogle Scholar
    • 42. Evans K . Supported phospholipid bilayer interaction with components found in typical room-temperature ionic liquids – a QCM-D and AFM study. Int, J. Mol. Sci. 9(4), 498–511 (2008). Crossref, Medline, CASGoogle Scholar
    • 43. Andersson M , Sellborn A , Fant C , Gretzer C , Elwing H . Acoustics of blood plasma on solid surfaces. J. Biomater. Sci. Polym. Ed. 13(8), 907–917 (2002). Crossref, Medline, CASGoogle Scholar
    • 44. Santos-Martinez MJ , Inkielewicz-Stepniak I , Medina C et al. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation. Int. J. Nanomedicine 7, 243–255 (2012). Crossref, Medline, CASGoogle Scholar
    • 45. Lind TK , Cárdenas M . Understanding the formation of supported lipid bilayers via vesicle fusion – a case that exemplifies the need for the complementary method approach (review). Biointerphases 11(2), 020801 (2016). Crossref, MedlineGoogle Scholar
    • 46. Joshi T , Voo ZX , Graham B , Spiccia L , Martin LL . Real-time examination of aminoglycoside activity towards bacterial mimetic membranes using Quartz Crystal Microbalance with dissipation monitoring (QCM-D). Biochim. Biophys. Acta 1848(2), 385–391 (2015). Crossref, Medline, CASGoogle Scholar
    • 47. Lesniak A , Salvati A , Santos-Martinez MJ , Radomski MW , Dawson KA , Åberg C . Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135(4), 1438–1444 (2013). Crossref, Medline, CASGoogle Scholar
    • 48. Shpigel N , Levi MD , Sigalov S , Daikhin L , Aurbach D . In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring . Acc. Chem. Res. 51(1), 69–79 (2018). Crossref, Medline, CASGoogle Scholar
    • 49. Sadman K , Wiener CG , Weiss RA , White CC , Shull KR , Vogt BD . Quantitative rheometry of thin soft materials using the quartz crystal microbalance with dissipation. Anal. Chem. 90(6), 4079–4088 (2018). Crossref, Medline, CASGoogle Scholar
    • 50. Chen KL , Bothun GD . Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ. Sci. Technol. 48(2), 873–880 (2014). Crossref, Medline, CASGoogle Scholar
    • 51. Yousefi N , Tufenkji N . Probing the Interaction between nanoparticles and lipid membranes by quartz crystal microbalance with dissipation monitoring. Front. Chem. 4, 46 (2016). Crossref, MedlineGoogle Scholar
    • 52. Chen Q , Xu S , Liu Q , Masliyah J , Xu Z . QCM-D study of nanoparticle interactions. Adv. Colloid Interface Sci. 233, 94–114 (2016). Crossref, Medline, CASGoogle Scholar
    • 53. Tong X , Moradipour M , Novak B et al. Experimental and molecular dynamics simulation study of the effects of lignin dimers on the gel-to-fluid phase transition in DPPC bilayers. J. Phys. Chem. B. 123(39), 8247–8260 (2019). Crossref, Medline, CASGoogle Scholar
    • 54. Ábrahám Á , Katona M , Kasza G , Kiss É . Amphiphilic polymer layer – model cell membrane interaction studied by QCM and AFM. Eur. Polym. J. 93, 212–221 (2017). Crossref, CASGoogle Scholar
    • 55. Frost R , Grandfils C , Cerda B , Kasemo B , Svedhem S . Structural rearrangements of polymeric insulin-loaded nanoparticles interacting with surface-supported model lipid membranes. J. Biomater. Nanobiotechnol. 2(2), 180–192 (2011). CrossrefGoogle Scholar
    • 56. Zhao F , Holmberg JP , Abbas Z et al. TiO2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches. RSC Adv. 6(94), 91102–91110 (2016). Crossref, CASGoogle Scholar
    • 57. Bailey CM , Kamaloo E , Waterman KL , Wang KF , Nagarajan R , Camesano TA . Size dependence of gold nanoparticle interactions with a supported lipid bilayer: a QCM-D study. Biophys. Chem. 203–204, 51–61 (2015). Crossref, Medline, CASGoogle Scholar
    • 58. Jing B , Zhu Y . Disruption of supported lipid bilayers by semihydrophobic nanoparticles. J. Am. Chem. Soc. 133(28), 10983–10989 (2011). Crossref, Medline, CASGoogle Scholar
    • 59. Reimhult K , Yoshimatsu K , Risveden K , Chen S , Ye L , Krozer A . Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles. Biosens. Bioelectron. 23(12), 1908–1914 (2008). Crossref, Medline, CASGoogle Scholar
    • 60. Tellechea E , Johannsmann D , Steinmetz NF , Richter RP , Reviakine I . Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25(9), 5177–5184 (2009). Crossref, Medline, CASGoogle Scholar
    • 61. Hasan IY , Mechler A . Formation of planar unilamellar phospholipid membranes on oxidized gold substrate. Biointerphases 11(3), 031017 (2016). Crossref, MedlineGoogle Scholar
    • 62. Zwang TJ , Fletcher WR , Lane TJ , Johal MS . Quantification of the layer of hydration of a supported lipid bilayer. Langmuir 26(7), 4598–4601 (2010). Crossref, Medline, CASGoogle Scholar
    • 63. Marquês JT , Viana AS , de Almeida RFM . A biomimetic platform to study the interactions of bioelectroactive molecules with lipid nanodomains. Langmuir 30(42), 12627–12637 (2014). Crossref, Medline, CASGoogle Scholar
    • 64. Win KY , Feng S-S . Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(15), 2713–2722 (2005). Crossref, Medline, CASGoogle Scholar
    • 65. Qaddoumi MG , Ueda H , Yang J , Davda J , Labhasetwar V , Lee VHL . The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm. Res. 21(4), 641–648 (2004). Crossref, Medline, CASGoogle Scholar
    • 66. Sahoo SK , Panyam J , Prabha S , Labhasetwar V . Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Rel. 82(1), 105–114 (2002). Crossref, Medline, CASGoogle Scholar
    • 67. Uttamsingh S , Bao X , Nguyen KT et al. Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene 27(18), 2626–2634 (2008). Crossref, Medline, CASGoogle Scholar
    • 68. Gujral TS , Chan M , Peshkin L , Sorger PK , Kirschner MW , MacBeath G . A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 159(4), 844–856 (2014). Crossref, Medline, CASGoogle Scholar
    • 69. Casalino L , De Cesare D , Verde P . Accumulation of Fra-1 in RAS-transformed cells depends on both transcriptional autoregulation and MEK-dependent posttranslational stabilization. Mol. Cell. Biol. 23(12), 4401–4415 (2003). Crossref, Medline, CASGoogle Scholar
    • 70. Astete CE , Sabliov CM . Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17(3), 247–289 (2006). •• Presents a comprehensive review of poly(lactic-co-glycolic acid) (L-PLGA) nanoparticle (NP) synthesis methods and parameters that govern particle characteristics.Crossref, Medline, CASGoogle Scholar
    • 71. Noguchi T , Yamamuro T , Oka M et al. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility. J. Appl. Biomater. 2(2), 101–107 (1991). Crossref, Medline, CASGoogle Scholar
    • 72. Xu A , Yao M , Xu G et al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int. J. Nanomedicine 7, 3547–3554 (2012). Medline, CASGoogle Scholar
    • 73. Cartiera MS , Johnson KM , Rajendran V , Caplan MJ , Saltzman WM . The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30(14), 2790–2798 (2009). •• Fluorescent PLGA NPs were used to explore cellular uptake and intracellular fate in three different epithelial cell lines.Crossref, Medline, CASGoogle Scholar
    • 74. Bao W , Liu R , Wang Y et al. PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway. Int. J. Nanomedicine 10, 557–566 (2015). • Modified PLGA NPs improved the efficacy of chemotherapy daunorubicin using in vivo xenograft models.MedlineGoogle Scholar
    • 75. Davda J , Labhasetwar V . Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233(1–2), 51–59 (2002). Crossref, Medline, CASGoogle Scholar
    • 76. Kirtane AR , Kalscheuer SM , Panyam J . Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities. Adv. Drug Deliv. Rev. 65(13–14), 1731–1747 (2013). Crossref, Medline, CASGoogle Scholar
    • 77. Hatzivassiliou G , Haling JR , Chen H et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501(7466), 232–236 (2013). • There are differences in constitutive MAPK pathway activation depending on whether it is KRAS or BRAF driven. These differences should be considered when designing drugs to target that pathway through MEK inhibition.Crossref, Medline, CASGoogle Scholar
    • 78. Zaanan A , Okamoto K , Kawakami H , Khazaie K , Huang S , Sinicrope FA . The mutant KRAS gene up-regulates BCL-XL protein via STAT3 to confer apoptosis resistance that is reversed by BIM protein induction and BCL-XL antagonism. J. Biol. Chem. 290(39), 23838–23849 (2015). Crossref, Medline, CASGoogle Scholar
    • 79. Shin S , Blenis J . ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Cell Cycle 9(13), 2483–2484 (2010). Crossref, Medline, CASGoogle Scholar
    • 80. Shin S , Dimitri CA , Yoon S-O , Dowdle W , Blenis J . ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol. Cell. 38(1), 114–127 (2010). Crossref, Medline, CASGoogle Scholar
    • 81. Khalil NM , do Nascimento TCF , Casa DM et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf. B Biointerface. 101, 353–360 (2013). Crossref, Medline, CASGoogle Scholar
    • 82. Xie X , Tao Q , Zou Y et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J. Agric. Food Chem. 59(17), 9280–9289 (2011). Crossref, Medline, CASGoogle Scholar
    • 83. Alexis F , Pridgen E , Molnar LK , Farokhzad OC . Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5(4), 505–515 (2008). Crossref, Medline, CASGoogle Scholar
    • 84. Kumari A , Yadav SK , Yadav SC . Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 75(1), 1–18 (2010). Crossref, Medline, CASGoogle Scholar
    • 85. Masood F . Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 60, 569–578 (2016). Crossref, Medline, CASGoogle Scholar
    • 86. Khalil NM , Carraro E , Cótica LF , Mainardes RM . Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin. Drug Deliv. 8(1), 95–112 (2011). Crossref, Medline, CASGoogle Scholar