We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Short Communication

Cocaine detection using aptamer and molybdenum disulfide-gold nanoparticle-based sensors

    Li Gao

    *Author for correspondence:

    E-mail Address: oga2001@163.com

    Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China

    ,
    Wenwen Xiang

    Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China

    ,
    Zebin Deng

    Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China

    ,
    Keqing Shi

    Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China

    ,
    Huixing Wang

    Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China

    &
    Haixia Shi

    *Author for correspondence:

    E-mail Address: oga2001@163.com

    Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China

    Published Online:https://doi.org/10.2217/nnm-2019-0046

    Aim: The current work highlighted a novel colorimetric sensor based on aptamer and molybdenum disulfide (MoS2)-gold nanoparticles (AuNPs) that was developed for cocaine detection with high sensitivity. Materials & methods: Due to the presence of the plasmon resonance band on the surface of AuNPs, AuNPs aggregated and the color was changed from red to blue after adding a certain concentration of NaCl. We used MoS2 to optimize the sensing system of AuNPs. The folded conformation of the aptamer in combination with cocaine enhanced the salt tolerance of the MoS2-AuNPs, effectively preventing their aggregation. Results & conclusion: The detection limit of cocaine was 7.49 nM with good selectivity. The method based on MoS2-AuNPs colorimetry sensor is simple, quick, label-free and low cost.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Calipari ES , Ferris MJ , Jones SR . Extended access of cocaine self-administration results in tolerance to the dopamine-elevating and locomotor-stimulating effects of cocaine. J. Neurochem. 128(2), 224–232 (2014).
    • 2. Matsui A , Alvarez VA . Cocaine inhibition of synaptic transmission in the ventral pallidum is pathway-specific and mediated by serotonin. Cell Rep. 23(13), 3852–3863 (2018).
    • 3. Spronk DB , Van Wel JH , Ramaekers JG , Verkes RJ . Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci. Biobehav. R. 37(8), 1838–1859 (2013). • Describes the dangers of cocaine addiction on the human body.
    • 4. Kuypers KP , Steenbergen L , Theunissen EL , Toennes SW , Ramaekers JG . Emotion recognition during cocaine intoxication. Eur. Neuropsychopharmacol. 25(11), 1914–1921 (2015). • The importance of cocaine detection.
    • 5. Orsini J , Din N , Elahi E et al. Clinical and epidemiological characteristics of patients with acute drug intoxication admitted to ICU. J. Community Hosp. Intern. Med. Perspect. 7(4), 202–207 (2017). • Describes the clinical and epidemiological characteristics of patients with acute drug intoxication.
    • 6. Richardson GA , Larkby C , Goldschmidt L , Day NL . Adolescent initiation of drug use: effects of prenatal cocaine exposure. J. Am. Acad. Child Adolesc. Psychiatry 52(1), 37–46 (2013). • Describes adolescent initiation of drug use.
    • 7. Nutt D , King LA , Saulsbury W , Blakemore C . Development of a rational scale to assess the harm of drugs of potential misuse. Lancet 369(9566), 1047–1053 (2007).
    • 8. Sanchez-Gonzalez J , Jesus Tabernero M , Bermejo AM , Bermejo-Barrera P , Moreda-Pineiro A . Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography – tandem mass spectrometry. Talanta 147, 641–649 (2016).
    • 9. Silveira Gde O , Belitsky IT , Loddi S et al. Development of a method for the determination of cocaine, cocaethylene and norcocaine in human breast milk using liquid phase microextraction and gas chromatography–mass spectrometry. Forensic Sci. Int. 265, 22–28 (2016).
    • 10. Arroyo-Currás N , Scida K , Ploense KL , Kippin TE , Plaxco KW . High surface area electrodes generated via electrochemical roughening improve the signaling of electrochemical aptamer-based biosensors. Anal. Chem. 89(22), 12185–12191 (2017).
    • 11. Zhang Y , Sun Z , Tang L , Zhang H , Zhang G-J . Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification. Microchim. Acta. 183(10), 2791–2797 (2016).
    • 12. Ng S , Lim HS , Ma Q , Gao Z . Optical aptasensors for adenosine triphosphate. Theranostics 6(10), 1683–1702 (2016).
    • 13. Wang DS , Fan SK . Microfluidic surface plasmon resonance sensors: from principles to point-of-care applications. Sensors (Basel) 16(8), 1175 (2016).
    • 14. Chinowsky TM , Soelberg SD , Baker P et al. Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens. Bioelectron. 22(9–10), 2268–2275 (2007).
    • 15. Thavanathan J , Huang NM , Thong KL . Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide. Biosens. Bioelectron. 55, 91–98 (2014).
    • 16. Uludag Y , Tothill IE . Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal. Chem. 84(14), 5898–5904 (2012).
    • 17. Erturk G , Uzun L , Tumer MA , Say R , Denizli A . Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens. Bioelectron. 28(1), 97–104 (2011).
    • 18. Zhou W , Gao X , Liu D , Chen X . Gold nanoparticles for in vitro diagnostics. Chem. Rev. 115(19), 10575–10636 (2015).
    • 19. Austin LA , Mackey MA , Dreaden EC , El-Sayed MA . The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 88(7), 1391–1417 (2014).
    • 20. Shawky SM , Awad AM , Allam W , Alkordi MH , El-Khamisy SF . Gold aggregating gold: a novel nanoparticle biosensor approach for the direct quantification of hepatitis C virus RNA in clinical samples. Biosens. Bioelectron. 92, 349–356 (2017).
    • 21. Luo C , Wen W , Lin F , Zhang X , Gu H , Wang S . Simplified aptamer-based colorimetric method using unmodified gold nanoparticles for the detection of carcinoma embryonic antigen. RSC Adv. 5(15), 10994–10999 (2015).
    • 22. Gao Z , Qiu Z , Lu M , Shu J , Tang D . Hybridization chain reaction-based colorimetric aptasensor of adenosine 5’-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Biosens. Bioelectron. 89(Pt 2), 1006–1012 (2017).
    • 23. Hermann T , Pate1 DJ . Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000).
    • 24. Musumeci D , Platella C , Riccardi C , Moccia F , Montesarchio D . Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers (Basel) 9(12), 174 (2017).
    • 25. Duan N , Wu S , Dai S , Miao T , Chen J , Wang Z . Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchimi. Acta. 182(5–6), 917–923 (2014).
    • 26. Gopinath SC , Lakshmipriya T , Chen Y , Phang WM , Hashim U . Aptamer-based ‘point-of-care testing’. Biotechnol. Adv. 34(3), 198–208 (2016).
    • 27. Nimjee SM , White RR , Becker RC , Sullenger BA . Aptamers as therapeutics. Nat. Rev. Drug. Discov. 57, 61–79 (2017).
    • 28. Mokhtarzadeh A , Dolatabadi JEN , Abnous K , Guardia MDL , Ramezani MJB . Bioelectronics. Nanomaterial-based cocaine aptasensors. Biosens. Bioelectron. 68(68), 95–106 (2015).
    • 29. Liang S , Yang H , Renucci P et al. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun. 8, 14947 (2017).
    • 30. Chen Y-X , Wu X , Huang K-J . A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification. Sens. Actuators B Chem. 270, 179–186 (2018).
    • 31. Dai W , Dong H , Fugetsu B et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small 11(33), 4158–4164 (2015).
    • 32. Shuai HL , Wu X , Huang KJ , Zhai ZB . Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered hybridization chain reaction. Biosens. Bioelectron. 94, 616–625 (2017).
    • 33. Frens G . Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nat. Phys. Science. 241(20–22), 241 (1973).
    • 34. Zhao W , Brook MA , Li Y . Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9(15), 2363–2371 (2008).
    • 35. Huang K-J , Zhang J-Z , Shi G-W , Liu Y-M . Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim. Acta. 132, 397–403 (2014).
    • 36. Zhang H , Hu X , Fu X . Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels. Biosens. Bioelectron. 57, 22–29 (2014).
    • 37. He J-L , Wu Z-S , Zhou H et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal. Chem. 84(4), 1358–1364 (2010).
    • 38. Xie SJ , Zhou H , Liu D , Shen GL , Yu R , Wu ZS . In situ amplification signaling-based autonomous aptameric machine for the sensitive fluorescence detection of cocaine . Biosens. Bioelectron. 44, 95–100 (2013).
    • 39. Liu J , Lu Y . Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. Engl. 118(1), 96–100 (2006). •• Describes the fast colorimetric sensing of cocaine.
    • 40. Stojanovic MN , Landry DW . Aptamer-based colorimetric probe for cocaine. JACS 124(33), 9678–9679 (2002). •• Describes the aptamer-based colorimetric probe for cocaine.
    • 41. Zhang J , Wang L , Pan D et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4(8), 1196–1200 (2008). •• Describes a method with visual cocaine detection using gold nanoparticle.
    • 42. Zou R , Lou X , Ou H et al. Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Adv. 2(11), 4636–4638 (2012). •• Describes the specific triple-fragment aptamer for cocaine.
    • 43. Nie J , Zhang DW , Tie C , Zhou YL , Zhang XX . A label-free DNA hairpin biosensor for colorimetric detection of target with suitable functional DNA partners. Biosens. Bioelectron. 49, 236–242 (2013).
    • 44. Zhou J , Ellis AV , Kobus H , Voelcker NH . Aptamer sensor for cocaine using minor groove binder based energy transfer. Anal. Chim. Acta. 719, 76–81 (2012).
    • 45. Yan D , Chaogui C , Jianyuan Y et al. Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Anal. Chem. 82(4), 1556–1563 (2010).
    • 46. Roushani M , Shahdost-Fard F . A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform. Anal. Chim. Acta. 853, 214–221 (2015).
    • 47. Roushani M , Shahdost-Fard FJS , Chemical AB . A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sens. Actuators B: Chem. 207(77), 764–771 (2015).
    • 48. Shi H , Xiang W , Liu C , Shi H , Zhou Y , Gao L . Highly sensitive detection for cocaine using graphene oxide-aptamer based sensors in combination with tween 20. Nanosci. Nanotech. Lett. 10(12), 1707–1712 (2018).
    • 49. Xia H , Su G , Wang D . Size-dependent electrostatic chain growth of pH-sensitive hairy nanoparticles. Angew. Chem. Int. Ed. 52(13), 3726–3730 (2013).
    • 50. Fan M , Thompson M , Andrade ML , Brolo AG . Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing. Anal. Chem. 82(15), 6350–6352 (2010).