We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Protective effects of nanoceria in imiquimod induced psoriasis by inhibiting the inflammatory responses

    Akshara Domala

    Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India

    Authors contributed equally

    Search for more papers by this author

    ,
    Swarna Bale

    Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India

    Authors contributed equally

    Search for more papers by this author

    &
    Chandraiah Godugu

    *Author for correspondence:

    E-mail Address: chandragodugu@gmail.com

    Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India

    Published Online:https://doi.org/10.2217/nnm-2018-0515

    Aim: To investigate the effect of cerium oxide nanoparticles (nanoceria) on psoriasis. Materials & methods: Fourier transform infrared, powder x-ray diffraction and scanning electron microscopy were used to characterize nanoceria. Imiquimod (62.5 mg/mice) was used for the induction of psoriasis while nanoceria was administered/applied via multiple routes (topical gel, intraperitoneal and subcutaneous) as a therapeutic intervention once daily. Results: Nanoceria significantly attenuated splenic hypertrophy, psoriasis area severity index scoring, and lipid peroxidation. It also reduced the expression of various inflammatory and proliferation markers such as IL-17, IL-22, IL-23, Ki-67, NF-κB, COX-2 and GSK3. Conclusion: Nanoceria exerts an antipsoriatic effect by inhibiting major pathogenic immune axes namely the Th-cell mediated IL-17/IL-23 axis and by downregulating other crucial inflammatory proteins like NF-κB, COX-2 and GSK3.

    Graphical abstract

    References

    • 1. Sahu S , Katiyar SS , Kushwah V , Jain S . Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine 13(16), 1985–1998 (2018).
    • 2. Valdimarsson H , Bake BS , Jónsdótdr I , Fry L . Psoriasis: a disease of abnormal keratinocyte proliferation induced by T lymphocytes. Immunol. Today 7(9), 256–259 (1986).
    • 3. Rebholz B , Haase I , Eckelt B et al. Crosstalk between keratinocytes and adaptive immune cells in an IκBα protein-mediated inflammatory disease of the skin. Immunity 27(2), 296–307 (2007).
    • 4. Magee C , Farkas F , Ikumi N et al. SAT0319 description of musculoskeletal symptoms in a cohort of patients with psoriasis. Ann. Reheum. Dis. 77(Suppl. 2), 1024 (2018).
    • 5. El-Boghdady NA , Ismail MF , Abd-Alhameed MF , Ahmed AS , Ahmed HH . Bidirectional association between psoriasis and obesity: benefits and risks. J. Interferon Cytokine Res. 38(1), 12–19 (2018).
    • 6. Dattilo G , Imbalzano E , Casale M et al. Psoriasis and cardiovascular risk: correlation between psoriasis and cardiovascular functional indices. Angiology 69(1), 31–37 (2018).
    • 7. Frers RAK , Otero-Losada M , Kersberg E , Cosentino V , Capani F . Immune system links psoriasis-mediated inflammation to cardiovascular diseases via traditional and non-traditional cardiovascular risk factors. In: An Interdisciplinary Approach to Psoriasis. Chiriac A (Ed.). InTech, London, UK (2017).
    • 8. Naldi L , Chatenoud L , Linder D et al. Cigarette smoking, body mass index, and stressful life events as risk factors for psoriasis: results from an Italian case–control study. J. Investig. Dermatol. 125(1), 61–67 (2005).
    • 9. Umezawa Y , Ozawa A , Kawasima T et al. Therapeutic guidelines for the treatment of generalized pustular psoriasis (GPP) based on a proposed classification of disease severity. Arch. Dermatol. Res. 295(1), S43–S54 (2003).
    • 10. Woo SM , Choi JW , Yoon HS , Jo SJ , Youn JI . Classification of facial psoriasis based on the distributions of facial lesions. J. Am. Acad. Dermatol. 58(6), 959–963 (2008).
    • 11. Griffiths C , Christophers E , Barker J et al. A classification of psoriasis vulgaris according to phenotype. Br. J. Dermatol. 156(2), 258–262 (2007).
    • 12. Sukarovska BG , Lipozencić J , Vrzogić P . Topical corticosteroids and corticosteroid sparing therapy in psoriasis management. Acta Med. Croatica 61(4), 375–381 (2007).
    • 13. Brown KL , Krejci-Manwaring J , Tusa MG et al. Poor compliance with topical corticosteroids for atopic dermatitis despite severe disease. Dermatol. Online J. 14(9), (2008).
    • 14. Kyosseva SV , Chen L , Seal S , McGinnis JF . Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice. Exp. Eye Res. 116, 63–74 (2013).
    • 15. Goushbolagh NA , Farhood B , Astani A , Nikfarjam A , Kalantari M , Zare MH . Quantitative cytotoxicity, cellular uptake and radioprotection effect of cerium oxide nanoparticles in MRC-5 normal cells and MCF-7 cancerous cells. BioNanoScience 8(3), 769–777 (2018).
    • 16. Kumari P , Saifi MA , Khurana A , Godugu C . Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J. Trace Elem. Med. Biol. 50, 198–208 (2018).
    • 17. Eriksson P , Tal AA , Skallberg A et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep. 8(1), 6999 (2018).
    • 18. Celardo I , Traversa E , Ghibelli L . Cerium oxide nanoparticles: a promise for applications in therapy. J. Exp. Ther. Oncol. 9(1), 47–51 (2011).
    • 19. Celardo I , Pedersen JZ , Traversa E , Ghibelli L . Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4), 1411–1420 (2011).
    • 20. Mason J , Mason A , Cork M . Topical preparations for the treatment of psoriasis: a systematic review. Br. J. Dermatol. 142(3), 351–364 (2000).
    • 21. Schäfer-Korting M , Mehnert W , Korting H-C . Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. 59(6), 427–443 (2007).
    • 22. Zhang Z , Tsai PC , Ramezanli T , Michniak‐Kohn BB . Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdisciplinary Rev. 5(3), 205–218 (2013).
    • 23. Di Cesare A , Di Meglio P , Nestle FO . The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Investig. Dermatol. 129(6), 1339–1350 (2009).
    • 24. Kryczek I , Bruce AT , Gudjonsson JE et al. Induction of IL-17+ T cell trafficking and development by IFN-γ: mechanism and pathological relevance in psoriasis. J. Immunol. 181(7), 4733–4741 (2008).
    • 25. Ha H , Wang H , Siebenlist U . IL-17 is crucial for psoriatic inflammation, but also initiates an anti-inflammatory feedback loop via signaling into keratinocytes. J. Investig. Dermatol. (2018).
    • 26. Sangomla S , Saifi MA , Khurana A , Godugu C . Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation. J. Trace Elem. Med. Biol. 47, 53–62 (2018).
    • 27. Saifi MA , Sangomla S , Khurana A , Godugu C . Protective effect of nanoceria on cisplatin-induced nephrotoxicity by amelioration of oxidative stress and pro-inflammatory mechanisms. Biol. Trace Elem. Res. 189(1), 145–156 (2018).
    • 28. Karkale S , Khurana A , Saifi MA , Godugu C , Talla V . Oropharyngeal administration of silica in Swiss mice: a robust and reproducible model of occupational pulmonary fibrosis. Pulmon. Pharmacol. Ther. 51, 32–40 (2018).
    • 29. Karkale S , Khurana A , Saifi MA , Godugu C , Talla V . Andrographolide ameliorates silica induced pulmonary fibrosis. Int. Immunopharmacol. 62, 191–202 (2018).
    • 30. Kumar GS , Kulkarni A , Khurana A , Kaur J , Tikoo K . Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chemico-Biolog. Interact. 223, 125–133 (2014).
    • 31. Khurana A , Tekula S , Godugu C . Nanoceria suppresses multiple low doses of streptozotocin-induced type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine 13(15), 1905–1922 (2018).
    • 32. Bale S , Venkatesh P , Sunkoju M , Godugu C . An adaptogen: Withaferin A ameliorates in vitro and in vivo pulmonary fibrosis by modulating the interplay of fibrotic, matricelluar proteins, and cytokines. Front. Pharmacol. 9, 248 (2018).
    • 33. Tiruveedi VL , Bale S , Khurana A , Godugu C . Withaferin A, a novel compound of Indian ginseng (Withania somnifera), ameliorates C erulein‐induced acute pancreatitis: possible role of oxidative stress and inflammation. Phytother. Res. 32(12), 2586–2596 (2018).
    • 34. Nerurkar L , McColl A , Graham G , Cavanagh J . The systemic response to topical Aldara treatment is mediated through direct TLR7 stimulation as Imiquimod enters the circulation. Sci. Rep. 7(1), 16570 (2017).
    • 35. Bhalerao J , Bowcock AM . The genetics of psoriasis: a complex disorder of the skin and immune system. Hum. Mol. Genet. 7(10), 1537–1545 (1998).
    • 36. Mantovani L , Medaglia M , Piacentini P et al. Burden of moderate-to-severe plaque psoriasis and new therapeutic approaches (secukinumab): an Italian perspective. Dermatol. Ther. 6(2), 151–167 (2016).
    • 37. Stawczyk-Macieja M , Rębała K , Szczerkowska-Dobosz A et al. Evaluation of psoriasis genetic risk based on five susceptibility markers in a population from northern Poland. PloS ONE 11(9), e0163185 (2016).
    • 38. Fortune DG , Richards HL , Griffiths CE , Main CJ . Psychological stress, distress and disability in patients with psoriasis: consensus and variation in the contribution of illness perceptions, coping and alexithymia. Br. J. Clin. Psychol. 41(2), 157–174 (2002).
    • 39. de Korte J , Mombers FM , Bos JD , Sprangers MA . Quality of life in patients with psoriasis: a systematic literature review. J. Investig. Dermatol. Symp. Proc. 32(12), 2586–2596 (2004).
    • 40. Lowes MA , Russell CB , Martin DA , Towne JE , Krueger JG . The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 34(4), 174–181 (2013).
    • 41. Pulido-Reyes G , Rodea-Palomares I , Das S et al. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci. Rep. 5, 15613 (2015).
    • 42. Hirst SM , Karakoti AS , Tyler RD , Sriranganathan N , Seal S , Reilly CM . Anti‐inflammatory properties of cerium oxide nanoparticles. Small 5(24), 2848–2856 (2009).
    • 43. Malyukin Y , Maksimchuk P , Seminko V , Okrushko E , Spivak N . Limitations of self-regenerative antioxidant ability of nanoceria imposed by oxygen diffusion. J. Phys. Chem. C 122(28), 16406–16411 (2018).
    • 44. Newkirk GM , Wu H , Santana I , Giraldo JP . Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles. J. Visual. Exp. (138), e58373–e58373 (2018).
    • 45. Baldim V , Bedioui F , Mignet N , Margaill I , Berret J-F . The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10(15), 6971–6980 (2018).
    • 46. Sirsjö A , Karlsson M , Gidöf A , Rollman O , Törmä H . Increased expression of inducible nitric oxide synthase in psoriatic skin and cytokine‐stimulated cultured keratinocytes. Br. J. Dermatol. 134(4), 643–648 (1996).
    • 47. McKay IA , Leigh IM . Altered keratinocyte growth and differentiation in psoriasis. Clin. Dermatol. 13(2), 105–114 (1995).
    • 48. Cox CA , Shi G , Yin H et al. Both Th1 and Th17 are immunopathogenic but differ in other key biological activities. J. Immunol. 180(11), 7414–7422 (2008).
    • 49. Asha K , Singal A , Sharma SB , Arora VK , Aggarwal A . Dyslipidaemia & oxidative stress in patients of psoriasis: emerging cardiovascular risk factors. Ind. J. Med. Res. 146(6), 708 (2017).
    • 50. Shi Z-R , Tan G-Z , Cao C-X et al. Decrease of galectin-3 in keratinocytes: a potential diagnostic marker and a critical contributor to the pathogenesis of psoriasis. J. Autoimmunity 89, 30–40 (2018).
    • 51. Jiang M , Sun Z , Dang E et al. TGFβ/SMAD/microRNA-486-3p signaling axis mediates keratin 17 expression and keratinocyte hyperproliferation in psoriasis. J. Investig. Dermatol. 137(10), 2177–2186 (2017).
    • 52. Mohammed J , Gunderson AJ , Khong H-H , Koubek RD , Udey MC , Glick AB . TGFβ1 overexpression by keratinocytes alters skin dendritic cell homeostasis and enhances contact hypersensitivity. J. Investig. Dermatol. 133(1), 135–143 (2013).
    • 53. Blauvelt A . Dual inhibition of IL-12/IL-23 and selective inhibition of IL-23 in psoriasis. In: Biologic and Systemic Agents in Dermatology. Yamauchi PS (Ed.). Springer, Cham, Switzerland, 123–131 (2018).
    • 54. Lin Z-M , Ma M , Li H et al. Topical administration of reversible SAHH inhibitor ameliorates imiquimod-induced psoriasis-like skin lesions in mice via suppression of TNF-α/IFN-γ-induced inflammatory response in keratinocytes and T cell-derived IL-17. Pharmacol. Res. 129, 443–452 (2018).
    • 55. Nguyen LTH , Ahn S-H , Nguyen UT , Yang I-J . Dang-Gui-Liu-Huang Tang a traditional herbal formula, ameliorates imiquimod-induced psoriasis-like skin inflammation in mice by inhibiting IL-22 production. Phytomedicine 47, 48–57 (2018).
    • 56. Al-Shobaili HA , Farhan J , Zafar U , Rasheed Z . Functional role of human interleukin-32 and nuclear transcription factor-kB in patients with psoriasis and psoriatic arthritis. Int. J. Health Sci. 12(3), 29 (2018).
    • 57. Hampton PJ , Jans R , Flockhart RJ , Parker G , Reynolds NJ . Lithium regulates keratinocyte proliferation via glycogen synthase kinase 3 and NFAT2 (nuclear factor of activated T cells 2). J. Cell. Physiol. 227(4), 1529–1537 (2012).