We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo evaluation

    Islam A Khalil

    Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt

    Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy & Drug Manufacturing, Misr University of Science & Technology (MUST), 6th of October, Giza 12566, Egypt

    Authors contributed equally

    Search for more papers by this author

    ,
    Isra H Ali

    Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt

    Authors contributed equally

    Search for more papers by this author

    &
    Ibrahim M El-Sherbiny

    *Author for correspondence: Tel.: +202 3854 0407; Fax: +202 3851 7181;

    E-mail Address: ielsherbiny@zewailcity.edu.eg

    Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt

    Published Online:https://doi.org/10.2217/nnm-2018-0297

    Aim: This study involves, for the first time, the development of mucoadhesive biodegradable polymeric-multilayered nanoparticles-in-nanofibers (NPs-in-NFs) matrix as an innovative single-dose noninvasive ocular-insert that could substitute conventional ocular dosage-forms. Materials & methods: Azithromycin-loaded poly(lactic-co-glycolic acid) copolymer/pluronic NPs were developed then incorporated into electrospun polyvinylpyrrolidone NFs, and tested for their efficient treatment of ocular bacterial infection. Results: Release and permeation studies proved the ability of the insert to control drug release over 10 days. Conclusion: The incorporation of NPs into NFs achieved several other benefits like increasing ocular residence and contact time with conjunctival tissue, accurate dose delivery, sustaining drug release with constant rate, reducing frequency of administration, improving bioavailability along with decreasing incidence of visual and systemic side effects.

    References

    • 1 Sevillano D. Azithromycin iv pharmacodynamic parameters predicting Streptococcus pneumoniae killing in epithelial lining fluid versus serum: an in vitro pharmacodynamic simulation. J. Antimicrob. Chemother. 57(6), 1128–1133 (2006).
    • 2 Retsema J, Fu W. Macrolides: structures and microbial targets. Int. J. Antimicrob. Agents. 18(Suppl. 1), 3–10 (2001).
    • 3 Imamura Y, Higashiyama Y, Tomono K et al. Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob. Agents Chemother. 49(4), 1377–1380 (2005).
    • 4 Labro MT. Intracellular bioactivity of macrolides. Clin. Microbiol. Infect. 1, S24–S30 (1996).
    • 5 Cochereau I, Goldschmidt P, Goepogui A et al. Efficacy and safety of short duration azithromycin eye drops versus azithromycin single oral dose for the treatment of trachoma in children: a randomised, controlled, double-masked clinical trial. Br. J. Ophthalmol. 91(5), 667–672 (2007).
    • 6 Dandona R, Dandona L. Socioeconomic status and blindness. Br. J. Ophthalmol. 85, 1484–1488 (2001).
    • 7 Cao F, Zhang X, Ping Q. New method for ophthalmic delivery of azithromycin by poloxamer/carbopol-based in situ gelling system. Drug Deliv. 17(7), 500–507 (2010).
    • 8 Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J. Control. Rel. 83(1), 65–74 (2002).
    • 9 Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 12(3), 348–360 (2010).
    • 10 Li X, Zhang Z, Chen H. Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac. Int. J. Pharm. 448(1), 96–100 (2013).
    • 11 Kamaleddin MA. Nano-ophthalmology: applications and considerations. Nanomedicine 13(4), 1459–1472 (2017).
    • 12 Lalu L, Tambe V, Pradhan D et al. Novel nanosystems for the treatment of ocular inflammation: current paradigms and future research directions. J. Control. Rel. 268, 19–39 (2017).
    • 13 Gagandeep, Garg T, Malik B, Rath G, Goyal AK. Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur. J. Pharm. Sci. 53(1), 10–16 (2014).
    • 14 Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17(3), 247–289 (2006).
    • 15 Elbaz NM, Khalil IA, Abd-Rabou AA, El-Sherbiny IM. Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int. J. Biol. Macromol. 92, 254–269 (2016).
    • 16 Hefnawy A, Khalil IA, El-Sherbiny IM. Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of doxorubicin to brain. Nanomedicine (Lond). 12(24), 2737–2761 (2017).
    • 17 Sedeky AS, Khalil IA, Hefnawy A, El-Sherbiny IM. Development of core-shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line. Eur. J. Pharm. Sci. 118, 103–112 (2018).
    • 18 Ali IH, Khalil IA, El-Sherbiny IM. Single-dose electrospun nanoparticles-in-nanofibers wound dressings with enhanced epithelialization, collagen deposition, and granulation properties. ACS Appl. Mater. Interfaces. 8(23), 14453–14469 (2016).
    • 19 El-Nabarawi MA, Khalil IA, Saad RM. Impact of hydrophilic polymer solubilization on bioavailability enhancement of repaglinide by solid dispersion. Inven. Rapid Pharm Tech. 2016(3), 1–12 (2016).
    • 20 Jaiswar DR, Jha D, Amin PD. Preparation and characterizations of stable amorphous solid solution of azithromycin by hot melt extrusion. J. Pharm. Investig. 46(7), 655–668 (2016).
    • 21 Alvarado HL, Abrego G, Garduño-Ramirez ML, Clares B, Calpena AC, García ML. Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine 11(3), 521–530 (2015).
    • 22 Kamel KM, Khalil IA, Rateb ME, Elgendy H, Elhawary S. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J. Agric. Food Chem. 65(36), 7966–7981 (2017).
    • 23 Zhang Y, Huo M, Zhou J et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 12(3), 263–271 (2010).
    • 24 Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13(2), 123–133 (2001).
    • 25 Abdellatif MM, Khalil IA, Khalil MAF. Sertaconazole nitrate-loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int. J. Pharm. 527(1–2), 1–11 (2017).
    • 26 Sharma C, Dinda AK, Mishra NC. Fabrication and characterization of natural origin chitosan-gelatin-alginate composite scaffold by foaming method without using surfactant. J. Appl. Polym. Sci. 127(4), 3228–3241 (2013).
    • 27 Vargas EAT, do Vale Baracho NC, de Brito J, de Queiroz AAA. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 6(3), 1069–1078 (2010).
    • 28 Lu L, Fu R, Li C et al. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int. J. Nanomedicine 8, 4131 (2013).
    • 29 Sreedhara S, Tata N. A novel method for measurement of porosity in nanofiber mat using pycnometer in filtration. J. Eng. Fabr. Fibers. 8(4), 132–137 (2013).
    • 30 Senthilraja P, Kathiresan K. In vitro cytotoxicity MTT assay in vero, HepG2 and MCF −7 cell lines study of marine yeast. J. Appl. Pharm. Sci. 5(03), 080–084 (2015).
    • 31 Askari P, Zahedi P, Rezaeian I. Three-layered electrospun PVA/PCL/PVA nanofibrous mats containing tetracycline hydrochloride and phenytoin sodium: a case study on sustained control release, antibacterial, and cell culture properties. J. Appl. Polym. Sci. 133(16), n/a-n/a (2016).
    • 32 Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 99(3), 306–314 (2010).
    • 33 Suvarna SK, Layton C, Bancroft JD. Bancroft's Theory and Practice of Histological Techniques (7th Edition) [Internet]. Elsevier Health Sciences, The Netherlands. www.elsevier.com/books/bancrofts-theory-and-practice-of-histological-techniques-e-book/suvarna/978-0-7020-5032-9.
    • 34 Ximenes KF, Silva JV, Vasconcelos KFX, Monte FQ. The role of Descemet's membrane in the pathogeny of corneal edema following anterior segment surgery. Rev. Bras. Oftalmol. 73(5), 262–268 (2014).
    • 35 Gandhi R, Pillai O, Thilagavathi R, Gopalakrishnan B, Kaul CL, Panchagnula R. Characterization of azithromycin hydrates. Eur. J. Pharm. Sci. 16(3), 175–184 (2002).
    • 36 Zhang Y, Lam YM. Controlled synthesis and association behavior of graft pluronic in aqueous solutions. J. Colloid Interface Sci. 306(2), 398–404 (2007).
    • 37 Yildirim A, Demirel GB, Erdem R, Senturk B, Tekinay T, Bayindir M. Pluronic polymer capped biocompatible mesoporous silica nanocarriers. Chem. Commun. 49(84), 9782 (2013).
    • 38 D'Avila Carvalho Erbetta C. Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer. J. Biomater. Nanobiotechnol. 03(02), 208–225 (2012).
    • 39 Andhariya N, Chudasama B, Mehta RV, Upadhyay RV. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin. J. Nanoparticle Res. 13(4), 1677–1688 (2011).
    • 40 Desai K, Mallery S, Schwendeman S. Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(dl-lactide-co-glycolide) implants. Eur. J. Pharm. Biopharm. 70(1), 187–198 (2008).
    • 41 Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai GA. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV–Raman and FTIR. J. Phys. Chem. B. 110(46), 23052–23059 (2006).
    • 42 Zhao M, Wang L, Liu H, Wang Y, Yang H. Preparation, physicochemical characterization and in vitro dissolution studies of azithromycin-cyclodextrin inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 85(1–2), 137–149 (2016).
    • 43 Hamoudi-Ben Yelles MC, Tran Tan V, Danede F, Willart JF, Siepmann J. PLGA implants: how poloxamer/PEO addition slows down or accelerates polymer degradation and drug release. J. Control. Rel. 253, 19–29 (2017).
    • 44 Rinaudo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006).
    • 45 Chen S-C, Wu Y-C, Mi F-L, Lin Y-H, Yu L-C, Sung H-W. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Rel. 96(2), 285–300 (2004).
    • 46 Morsi N, Ghorab D, Refai H, Teba H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int. J. Pharm. 506(1–2), 57–67 (2016).
    • 47 Seyfoddin A, Sherwin T, Patel DV et al. Ex vivo and in vivo evaluation of chitosan coated nanostructured lipid carriers for ocular delivery of acyclovir. Curr. Drug Deliv. 13(6), 923–934 (2016).
    • 48 Qaddoumi MG, Gukasyan HJ, Davda J, Labhasetwar V, Kim K-J, Lee VHL. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol. Vis. 9(October), 559–568 (2003).
    • 49 Hardarson SH, Sigurdsson HH, Nielsdottir GE, Valgeirsson J, Loftsson T, Stefansson E. Ocular powder: dry topical formulations of timolol are well tolerated in rabbits. J. Ocul. Pharmacol. Ther. 22(5), 340–346 (2006).
    • 50 Vijayasekaran S, Chirila TV, Hong Y et al. Poly(I-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: histopathological evaluation in the animal eye. J. Biomater. Sci. Polym. Ed. 7(8), 685–696 (1996).
    • 51 Trost LW, Kivilcim M, Peyman GA, Aydin E, Kazi AA. The effect of intravitreally injected povidone-iodine on Staphylococcus epidermidis in rabbit eyes. J. Ocul. Pharmacol. Ther. 23(1), 70–77 (2007).