We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Development of near-infrared region luminescent N-acetyl-L-cysteine-coated Ag2S quantum dots with differential therapeutic effect

    Pelin Turhan Buz

    Department of Chemistry, Koc University, Istanbul 34450, Turkey

    ,
    Fatma Demir Duman

    Department of Chemistry, Koc University, Istanbul 34450, Turkey

    ,
    Merve Erkisa

    Department of Clinical Biochemistry, School of Medicine, Istinye University, Istanbul 34010, Turkey

    ,
    Gozde Demirci

    Graduate School of Materials Science & Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey

    ,
    Ferda Ari

    Department of Biology, Uludag University, Bursa 16059, Turkey

    ,
    Engin Ulukaya

    **Author for correspondence: Tel.: +90 (0)850 283 69 10;

    E-mail Address: eulukaya@istinye.edu.tr

    Department of Clinical Biochemistry, School of Medicine, Istinye University, Istanbul 34010, Turkey

    &
    Havva Yagci Acar

    *Author for correspondence: Tel.: +90 (212) 338 1742;

    E-mail Address: fyagci@ku.edu.tr

    Department of Chemistry, Koc University, Istanbul 34450, Turkey

    Surface Science & Technology Center (KUYTAM), Koc University, Istanbul 34450, Turkey

    Published Online:https://doi.org/10.2217/nnm-2018-0214

    Aim: N-acetyl-L-cysteine (NAC) is a free radical scavenger. We developed NAC-coated Ag2S (NAC-Ag2S) quantum dot (QD) as an optical imaging and therapeutic agent. Materials & methods: QDs were synthesized in water. Their optical imaging potential and toxicity were studied in vitro. Results: NAC-Ag2S QDs have strong emission, that is tunable between 748 and 840 nm, and are stable in biologically relevant media. QDs showed significant differences both in cell internalization and toxicity in vitro. QDs were quite toxic to breast and cervical cancer cells but not to lung derived cells despite the higher uptake. NAC-Ag2S reduces reactive oxygen species (ROS) but causes cell death via DNA damage and apoptosis. Conclusion: NAC-Ag2S QDs are stable and strong signal-generating theranostic agents offering selective therapeutic effects.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5(9), 763 (2008).
    • 2 Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998).
    • 3 Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4(6), 435 (2005).
    • 4 Klohs J, Wunder A, Licha K. Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res. Cardiol. 103(2), 144–151 (2008).
    • 5 Altınoğlu Eİ, Adair JH. Near infrared imaging with nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2(5), 461–477 (2010).
    • 6 Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 14(1), 71–79 (2010). • Review of in vivo applications of near-infrared fluorescence imaging with improved photon penetration through tissue and minimal tissue autofluorescence.
    • 7 Chen H, Wang Y, Xu J et al. Non-invasive near infrared fluorescence imaging of CdHgTe quantum dots in mouse model. J. Fluoresc. 18(5), 801–811 (2008).
    • 8 Qian H, Dong C, Peng J, Qiu X, Xu Y, Ren J. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition. J. Phys. Chem. C 111(45), 16852–16857 (2007).
    • 9 Liang G-X, Gu M-M, Zhang J-R, Zhu J-J. Preparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots. Nanotechnology 20(41), 415103 (2009).
    • 10 Deng D, Xia J, Cao J et al. Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule. J. Colloid Interface Sci. 367(1), 234–240 (2012).
    • 11 Chen N, He Y, Su Y et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials 33(5), 1238–1244 (2012).
    • 12 Su Y, Hu M, Fan C et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials 31(18), 4829–4834 (2010).
    • 13 Du Y, Xu B, Fu T et al. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 132(5), 1470–1471 (2010).
    • 14 Hong G, Robinson JT, Zhang Y et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. 124(39), 9956–9959 (2012).
    • 15 Duman FD, Hocaoglu I, Ozturk DG, Gozuacik D, Kiraz A, Acar HY. Highly luminescent and cytocompatible cationic Ag2S NIR-emitting quantum dots for optical imaging and gene transfection. Nanoscale 7(26), 11352–11362 (2015).
    • 16 Hocaoglu I, Cizmeciyan MN, Erdem R et al. Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem. 22(29), 14674–14681 (2012). • Demonstrates high cytocompatability of 2-mercaptopropionic acid-coated Ag2S.
    • 17 Chen J, Feng L, Zhang M, Zhang X, Su H, Cui D. Synthesis of ribonuclease-a conjugated Ag2S quantum dots clusters via biomimetic route. Mater. Lett. 96 224–227 (2013).
    • 18 Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60(11), 1226–1240 (2008).
    • 19 Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv. 5(3), 263–267 (2008).
    • 20 Derfus AM, Chen AA, Min D-H, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chem. 18(5), 1391–1396 (2007).
    • 21 Hocaoglu I, Demir F, Birer O et al. Emission tunable, cyto/hemocompatible, near-IR-emitting Ag2S quantum dots by aqueous decomposition of DMSA. Nanoscale 6(20), 11921–11931 (2014).
    • 22 Yang H-Y, Zhao Y-W, Zhang Z-Y, Xiong H-M, Yu S-N. One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 24(5), 055706 (2013).
    • 23 Duman FD, Khodadust R, Durmusoglu EG, Yagci MB, Acar HY. Impact of reaction variables and PEI/l-cysteine ratio on the optical properties and cytocompatibility of cationic Ag 2 S quantum dots as NIR bio-imaging probes. RSC Adv. 6(81), 77644–77654 (2016).
    • 24 Zhao D, He Z, Chan W, Choi MM. Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-L-cysteine via hydrothermal method. J. Phys. Chem. C 113(4), 1293–1300 (2008).
    • 25 Xue B, Deng D-W, Cao J et al. Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging. Dalton Trans. 41(16), 4935–4947 (2012).
    • 26 Xiao L, Zhao D, Chan W-H, Choi MM, Li H-W. Inhibition of beta 1–40 amyloid fibrillation with N-acetyl-L-cysteine capped quantum dots. Biomaterials 31(1), 91–98 (2010).
    • 27 Wang Q, Zhan G, Li C. Facile synthesis of N-acetyl-L-cysteine capped CdHgSe quantum dots and selective determination of hemoglobin. Spectrochim. Acta A 117 198–203 (2014).
    • 28 Wang Q, Yu X, Zhan G, Li C. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots. Biosens. Bioelectron. 54 311–316 (2014).
    • 29 Yang T, He Q, Liu Y, Zhu C, Zhao D. Water-soluble N-Acetyl-L-cysteine-capped CdTe quantum dots application for Hg (II) detection. J. Anal. Methods Chem. 2013 (2013).
    • 30 Heli H, Majdi S, Sattarahmady N. Ultrasensitive sensing of N-acetyl-L-cysteine using an electrocatalytic transducer of nanoparticles of iron (III) oxide core–cobalt hexacyanoferrate shell. Sens. Actuators B Chem. 145(1), 185–193 (2010).
    • 31 Kelly GS. Clinical applications of N-acetylcysteine. Altern. Med. Rev. 3(2), 114–127 (1998).
    • 32 Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 95(4), 503–507 (2005).
    • 33 Kopke RD, Jackson RL, Coleman JK, Liu J, Bielefeld EC, Balough BJ. NAC for noise: from the bench top to the clinic. Hear. Res. 226(1-2), 114–125 (2007).
    • 34 Feghali JG, Liu W, Van De Water TR. L-N-acetyl-cysteine protection against cisplatin-induced auditory neuronal and hair cell toxicity. Laryngoscope 111(7), 1147–1155 (2001). •• Demonstrates the protective effect of N-acetyl-L-cysteine (NAC) against the side effects of chemotherepeutic drug cisplatin.
    • 35 Doroshow J, Locker GY, Ifrim I, Myers CE. Prevention of doxorubicin cardiac toxicity in the mouse by N-acetylcysteine. J. Clin. Investig. 68(4), 1053–1064 (1981).
    • 36 Choi AO, Cho SJ, Desbarats J, Lovrić J, Maysinger D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J. Nanobiotechnol. 5(1), 1 (2007). •• Discusses the mechanisms of quantum dot (QD)-induced toxicity in human neuroblastoma cell line exposed to NAC-conjugated, NAC-capped and cysteamine-capped CdTe QDs.
    • 37 James LP, Mccullough SS, Lamps LW, Hinson JA. Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. J. Toxicol. Sci. 75(2), 458–467 (2003).
    • 38 Soenen SJ, Montenegro JM, Abdelmonem AM et al. The effect of nanoparticle degradation on poly(methacrylic acid)-coated quantum dot toxicity: the importance of particle functionality assessment in toxicology. Acta Biomater. 10(2), 732–741 (2014).
    • 39 Morrell CN. Reactive oxygen species: finding the right balance. Circ Res. 103(6), 571–572 (2008).
    • 40 Bazhin AV, Philippov PP, Karakhanova S. Reactive oxygen species in cancer biology and anticancer therapy. Oxid. Med. Cell Longev. doi: 10.1155/2016/4197815 4197815 (2016).
    • 41 Jeong C-H, Joo SH. Downregulation of reactive oxygen species in apoptosis. J. Cancer Prev. 21(1), 13 (2016). •• Reports the decline of reactive oxygen species (ROS) during apoptotic cell death.
    • 42 Cho S-G, Woo S-M, Ko S-G. Butein suppresses breast cancer growth by reducing a production of intracellular reactive oxygen species. J. Exp. Clin. Cancer Res. 33(1), 51 (2014). •• Indicates that NAC, a free radical scavenger, reduces ROS production and AKT phosphorylation, resulting in apoptotic cell death in breast cancer.
    • 43 Markoutsa E, Xu P. Redox potential-sensitive N-acetyl cysteine-prodrug nanoparticles inhibit the activation of microglia and improve neuronal survival. Mol. Pharm. 14(5), 1591–1600 (2017).
    • 44 Xue C, Liu W, Wu J, Yang X, Xu H. Chemoprotective effect of N-acetylcysteine (NAC) on cellular oxidative damages and apoptosis induced by nano titanium dioxide under UVA irradiation. Toxicol. In Vitro 25(1), 110–116 (2011).
    • 45 He Y-Y, Häder D-P. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. J. Photochem. Photobiol. B 66(2), 115–124 (2002).
    • 46 Harada D, Anraku M, Fukuda H et al. Kinetic studies of covalent binding between N-acetyl-L-cysteine and human serum albumin through a mixed-disulfide using an N-methylpyridinium polymer-based column. Drug Metab. Pharmacokinet. 19(4), 297–302 (2004).
    • 47 Giustarini D, Milzani A, Dalle-Donne I, Tsikas D, Rossi R. N-Acetylcysteine ethyl ester (NACET): a novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential. Biochem. Pharmacol. 84(11), 1522–1533 (2012).
    • 48 Grinberg L, Fibach E, Amer J, Atlas D. N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic. Biol. Med. 38(1), 136–145 (2005).
    • 49 Wang B, Navath RS, Romero R, Kannan S, Kannan R. Anti-inflammatory and anti-oxidant activity of anionic dendrimer–N-acetyl cysteine conjugates in activated microglial cells. Int. J. Pharm. 377(1-2), 159–168 (2009).
    • 50 Jiang P, Tian Z-Q, Zhu C-N, Zhang Z-L, Pang D-W. Emission-tunable near-infrared Ag2S quantum dots. Chem. Mater. 24(1), 3–5 (2011).
    • 51 Madelung O. Semiconductors: Data Handbook. 3rd Edition Springer, Berlin, Germany (2004).
    • 52 HFM Marlene C, Morris EHE, Paretzkin B, Parker HS, Panagiotopoulos NC. Standard x-ray diffraction powder patterns. UNT Digital Library, Washington DC, USA (1960).
    • 53 Pavlin M, Bregar VB. Stability of nanoparticle suspensions in different biologically relevant media. Dig. J. Nanomater. Bios. 7(4), 1389–1400 (2012).
    • 54 Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. In: Advanced Protocols in Oxidative Stress II. Amstrong, Donald (Eds). Springer 57–72 (2010).
    • 55 Nargi JL, Ratan RR, Griffin DE. p53-independent inhibition of proliferation and p21Waf1/Cip1-modulated induction of cell death by the antioxidants N-acetylcysteine and vitamin E. Neoplasia 1(6), 544–556 (1999).
    • 56 Kawakami S, Kageyama Y, Fujii Y, Kihara K, Oshima H. Inhibitory effect of N-acetylcysteine on invasion and MMP-9 production of T24 human bladder cancer cells. Anticancer Res. 21(1A), 213–219 (2001).
    • 57 Supabphol A, Muangman V, Chavasiri W, Supabphol R, Gritsanapan W. N-acetylcysteine inhibits proliferation, adhesion, migration and invasion of human bladder cancer cells. J. Med. Assoc. Thai. 92(9), 1171 (2009).
    • 58 Lee Y-J, Lee DM, Lee C-H et al. Suppression of human prostate cancer PC-3 cell growth by N-acetylcysteine involves over-expression of Cyr61. Toxicol. In Vitro 25(1), 199–205 (2011).
    • 59 Lee M-F, Chan C-Y, Hung H-C, Chou I-T, Yee AS, Huang C-Y. N-acetylcysteine (NAC) inhibits cell growth by mediating the EGFR/Akt/HMG box-containing protein 1 (HBP1) signaling pathway in invasive oral cancer. Oral Oncol. 49(2), 129–135 (2013).
    • 60 Hann SS, Zheng F, Zhao S. Targeting 3-phosphoinositide-dependent protein kinase 1 by N-acetyl-cysteine through activation of peroxisome proliferators activated receptor alpha in human lung cancer cells, the role of p53 and p65. J. Exp. Clin. Cancer Res. 32(1), 43 (2013).
    • 61 Ulukaya E, Ozdikicioglu F, Oral AY, Demirci M. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol. In Vitro 22(1), 232–239 (2008). • Detailed report illustrating the effect of N-acetyl cysteine and penicillamine on apoptosis.
    • 62 Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. J. Exp. Clin. Cancer Res. 33(1), 92 (2014).
    • 63 Guan D, Xu Y, Yang M, Wang H, Wang X, Shen Z. N-acetyl cysteine and penicillamine induce apoptosis via the ER stress response-signaling pathway. Mol. Carcinog. 49(1), 68–74 (2010).
    • 64 Tsai J-C, Jain M, Hsieh C-M et al. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J. Biol. Chem. 271(7), 3667–3670 (1996).
    • 65 Liu M, Pelling JC, Ju J, Chu E, Brash DE. Antioxidant action via p53-mediated apoptosis. Cancer Res. 58(8), 1723–1729 (1998).
    • 66 Havre PA, O’reilly S, Mccormick JJ, Brash DE. Transformed and tumor-derived human cells exhibit preferential sensitivity to the thiol antioxidants, N-acetyl cysteine and penicillamine. Cancer Res. 62(5), 1443–1449 (2002).
    • 67 Navath RS, Kurtoglu YE, Wang B, Kannan S, Romero R, Kannan RM. Dendrimer−drug conjugates for tailored intracellular drug release based on glutathione levels. Bioconjugate Chem. 19(12), 2446–2455 (2008).
    • 68 Lepri E, Gambelunghe C, Fioravanti A, Pedini M, Micheletti A, Rufini S. N-acetylcysteine increases apoptosis induced by H2O2 and mo-antiFas triggering in a 3DO hybridoma cell line. Cell Biochem. Funct. 18(3), 201–208 (2000).
    • 69 Rieber M, Rieber MS. N-Acetylcysteine enhances UV-mediated caspase-3 activation, fragmentation of E2F-4, and apoptosis in human C8161 melanoma: inhibition by ectopic Bcl-2 expression. Biochem. Pharmacol. 65(10), 1593–1601 (2003).
    • 70 Deshpande V, Kehrer JP. Mechanisms of N-acetylcysteine-driven enhancement of MK886-induced apoptosis. Cell Biol. Toxicol. 22(4), 303–311 (2006).
    • 71 Zhang L, Cheng X, Gao Y et al. Induction of ROS-independent DNA damage by curcumin leads to G2/M cell cycle arrest and apoptosis in human papillary thyroid carcinoma BCPAP cells. Food Funct. 7(1), 315–325 (2016).
    • 72 Yamashita N, Kawanishi S. Distinct mechanisms of DNA damage in apoptosis induced by quercetin and luteolin. Free Radic. Res. 33(5), 623–633 (2000). • In this study it was shown that ROS is not required for DNA damage.
    • 73 Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-Acetylcysteine. COPD 11(6), 705–717 (2014).
    • 74 Dekhuijzen PNR. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur. Respir. J. 23(4), 629–636 (2004).
    • 75 Vanzandwijk N. N-acetylcysteine for lung-cancer prevention. Chest 107(5), 1437–1441 (1995).