We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Applications of cobalt ferrite nanoparticles in biomedical nanotechnology

    Sumithra Y Srinivasan

    Nanobioscience Group, Agharkar Research Institute, Pune – 411 004, India

    Savitribai Phule Pune University, Ganeshkhind, Pune – 411 007, India

    ,
    Kishore M Paknikar

    Nanobioscience Group, Agharkar Research Institute, Pune – 411 004, India

    Savitribai Phule Pune University, Ganeshkhind, Pune – 411 007, India

    ,
    Dhananjay Bodas

    Nanobioscience Group, Agharkar Research Institute, Pune – 411 004, India

    Savitribai Phule Pune University, Ganeshkhind, Pune – 411 007, India

    &
    Virendra Gajbhiye

    *Authors for correspondence:

    E-mail Address: kpaknikar@gmail.com

    ;

    E-mail Address: dsbodas@aripune.org

    ;

    E-mail Address: cme_virendra@yahoo.co.in

    Nanobioscience Group, Agharkar Research Institute, Pune – 411 004, India

    Savitribai Phule Pune University, Ganeshkhind, Pune – 411 007, India

    Published Online:https://doi.org/10.2217/nnm-2017-0379

    Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe2O4) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe2O4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe2O4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013).
    • 2 Wu Y, Yang X, Liu YX et al. Magnetic nanoparticle for biomedicine applications. J. Nanotechnol. Nanomed. Nanobiotechnol. 2(1), (2015). • Comprehensive review on the use of magnetic nanoparticles in biomedicine.
    • 3 Li X, Wei J, Aifantis KE et al. Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. Part A 104, 1285–1296 (2016).
    • 4 Behrens S, Appel I. Magnetic nanocomposites. Curr. Opin. Biotechnol. 39, 89–96 (2016).
    • 5 Behrens S. Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3(3), 877–892 (2011).
    • 6 Srinivasan S, Paknikar K, Gajbhiye V, Bodas D. Magneto-conducting core/shell nanoparticles for biomedical applications. Chem. Nano. Mat. 4(2), 151–164 (2017). • Comprehensive review of core/shell magnetic nanoparticles in the biomedical field.
    • 7 Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324(6), 903–915 (2012).
    • 8 Lima-Tenório MK, Tenório-Neto ET, Hechenleitner AAW, Fessi H, Gómez Pineda EA. CoFe2O4 and ZnFe2O4 nanoparticles: an overview about structure, properties, synthesis and biomedical applications. J. Colloid Sci. Biotechnol. 5, 45–54 (2016).
    • 9 Park J, Porter MD, Granger MC. Colloidally assembled zinc ferrite magnetic beads: superparamagnetic labels with high magnetic moments for MR sensors. ACS Appl. Mater. Interfaces 9(23), 19569–19577 (2017).
    • 10 Pacakova B, Kubickova S, Reznickova A, And DN, Vejpravova J. Spinel ferrite nanoparticles: correlation of structure and magnetism. In: Magnetic Spinels – Synthesis, Properties and Applications. M Seehra (Ed.). IntechOpen Limited, London, UK (2017).
    • 11 Amiri S, Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C 33(1), 1–8 (2013). •• First and informative review on biomedical applications of cobalt ferrite nanoparticles.
    • 12 Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129(1–3), 51–65 (2007).
    • 13 Yáñez-Vilar S, Sánchez-Andújar M, Gómez-Aguirre C, Mira J, Señarís-Rodríguez MA, Castro-García S. A simple solvothermal synthesis of MFe2O4(M = Mn, Co and Ni) nanoparticles. J. Solid State Chem. 182(10), 2685–2690 (2009).
    • 14 Tang SQ, Moon SJ, Park KH, Paek SH, Chung K-W, Bae S. Feasibility of TEOS coated CoFe2O4 nanoparticles to a GMR Biosensor agent for single molecular detection. J. Nanosci. Nanotechnol. 11, 82–89 (2011).
    • 15 Kefeni KK, Mamba BB, Msagati TAM. Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (2017).
    • 16 Yoon T-J, Kim JS, Kim BG, Yu KN, Cho M-H, Lee J-K. Multifunctional nanoparticles possessing a ‘magnetic motor effect’ for drug or gene delivery. Angew. Chemie. 117, 1092–1095 (2005).
    • 17 Liu F, Laurent S, Roch A, Vander Elst L, Muller RN. Size-controlled synthesis of CoFe2O4 nanoparticles potential contrast agent for MRI and investigation on their size-dependent magnetic properties. J. Nanomater. 2013, 1–9 (2013).
    • 18 Lee SW, Bae S, Takemura Y et al. Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. J. Magn. Magn. Mater. 310, 2868–2870 (2007).
    • 19 Jeppson P, Sailer R, Jarabek E et al. Cobalt ferrite nanoparticles: achieving the superparamagnetic limit by chemical reduction. J. Appl. Phys. 100(11), 1–6 (2006).
    • 20 Maaz K, Mumtaz A, Hasanain SK, Ceylan A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007).
    • 21 Lu LT, Dung NT, Tung LD et al. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale. 7(46), 19596–19610 (2015). •• Important research article discussing influence of synthesis parameters on nanoparticles’ properties.
    • 22 Pillai V, Shah DO. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996).
    • 23 Puliová P, Kováč J, Voigt A, Raschman P. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magn. Magn. Mater. 341, 93–99 (2013).
    • 24 Manova E, Kunev B, Paneva D et al. Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004).
    • 25 Toksha BG, Shirsath SE, Patange SM, Jadhav KM. Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Commun. 147(11–12), 479–483 (2008).
    • 26 Rao KS, Choudary G, Rao KH, Sujatha C. Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Procedia Mater. Sci. 10(Cnt 2014), 19–27 (2015).
    • 27 Houshiar M, Zebhi F, Razi ZJ, Alidoust A, Askari Z. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014). •• Research article providing significant information on different synthesis methods and the resulting properties.
    • 28 Chen ZG, Tang DY. Antigen-antibody interaction from quartz crystal microbalance immunosensors based on magnetic CoFe2O4/SiO2 composite nanoparticle-functionalized biomimetic interface. Bioprocess Biosyst. Eng. 30(4), 243–249 (2007).
    • 29 He Y, Wang Y, Yang X, Xie S, Yuan R, Chai Y. Metal-organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal pro-brain natriuretic peptide. ACS Appl. Mater. Interfaces 8(12), 7683–7690 (2016).
    • 30 Pita M, Abad JM, Vaz-Dominguez C et al. Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J. Colloid Interface Sci. 321(2), 484–492 (2008).
    • 31 Ye D, Xu Y, Luo L, Ding Y, Wang Y, Liu X. LaNi0.5Ti0.5O3/CoFe2O4-based sensor for sensitive determination of paracetamol. J. Solid State Electrochem. 16(4), 1635–1642 (2012).
    • 32 Kumary VA, Divya J, Nancy TEM, Sreevalsan K. Voltammetric detection of paracetamol at cobalt ferrite nanoparticles modified glassy carbon electrode. Int. J. Electrochem. Sci. 8, 6610–6619 (2013).
    • 33 Asadpour-Zeynali K, Mollarasouli F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens. Bioelectron. 92, 509–516 (2017).
    • 34 Ensafi AA, Alinajafi HA, Jafari-Asl M, Rezaei B, Ghazaei F. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2. Mater. Sci. Eng. C 60, 276–284 (2016).
    • 35 Charan C, Shahi VK. Cobalt ferrite (CoFe2O4) nanoparticles (size: 10 nm) with high surface area for selective non-enzymatic detection of uric acid with excellent sensitivity and stability. RSC Adv. 6(64), 59457–59467 (2016).
    • 36 Zhang Y, Li J, Wang Z et al. Label-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid. Sci. Rep. 6, 23391 (2016). • Signature article on label-free detection using cobalt ferrite nanoparticles.
    • 37 Rakshit R, Pal M, Chaudhuri A, Mandal M, Mandal K. Research update: facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption. APL Mater. 3(110701), 1–6 (2015).
    • 38 Pal M, Kundu A, Rakshit R, Mandal K. Ligand-induced evolution of intrinsic fluorescence and catalytic activity from cobalt ferrite nanoparticles. Chem. Phys. Chem. 16(8), 1627–1634 (2015).
    • 39 Abdolmohammad-Zadeh H, Rahimpour E. CoFe2O4 nanoparticles functionalized with 8-hydroxyquinoline for dispersive solid-phase micro-extraction and direct fluorometric monitoring of aluminum in human serum and water samples. Anal. Chim. Acta. 881, 54–64 (2015).
    • 40 Bohara RA, Throat ND, Mulla NA, Pawar SH. Surface-modified cobalt ferrite nanoparticles for rapid capture, detection, and removal of pathogens: a potential material for water purification. Appl. Biochem. Biotechnol. 182(2), 598–608 (2017).
    • 41 Ma S, Zhan S, Jia Y, Zhou Q. Highly efficient antibacterial and Pb(II) removal effects of Ag-CoFe2O4-GO nanocomposite. ACS Appl. Mater. Interfaces 7(19), 10576–10586 (2015).
    • 42 Saucier C, Karthickeyan P, Ranjithkumar V, Lima EC, dos Reis GS, de Brum IAS. Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ. Sci. Pollut. Res. 24(6), 5918–5932 (2017).
    • 43 Li J, Chen M, Gao Z, Du J, Yang W, Yin M. Effective approach towards Si-bilayer-IDA modified CoFe2O4 magnetic nanoparticles for high efficient protein separation. Colloids Surfaces B Bio. 146, 468–474 (2016).
    • 44 Sun C, Hassanisaber H, Yu R, Ma S, Verbridge SS, Lu C. Paramagnetic structures within a microfluidic channel for enhanced immunomagnetic isolation and surface patterning of cells. Sci. Rep. 6, 29407 (2016).
    • 45 Mcbain SC, Jon HHY, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine 3(2), 169–180 (2008).
    • 46 Cai B, Zhao M, Ma Y, Ye Z, Huang J. Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release. ACS Appl. Mater. Interfaces 7(2), 1327–1333 (2015). • Excellent research article on morphologically controlled stimuli responsive CoFe2O4 nanoparticles for drug delivery.
    • 47 Liu M, Pan L, Piao H et al. Magnetically actuated wormlike nanomotors for controlled cargo release. ACS Appl. Mater. Interfaces 7(47), 26017–26021 (2015).
    • 48 Deng H, Song K, Zhao X et al. Tumor microenvironment activated membrane fusogenic liposome with speedy antibody and doxorubicin delivery for synergistic treatment of metastatic tumors. ACS Appl. Mater. Interfaces 9(11), 9315–9326 (2017).
    • 49 Haynes MT, Huang L. Maximizing the supported bilayer phenomenon: liposomes comprised exclusively of PEGylated phospholipids for enhanced systemic and lymphatic delivery. ACS Appl. Mater. Interfaces 8(37), 24361–24367 (2016).
    • 50 Tambe P, Kumar P, Karpe YA, Paknikar KM, Gajbhiye V. Triptorelin tethered multifunctional PAMAM-Histidine-PEG nanoconstructs enable specific targeting and efficient gene silencing in LHRH overexpressing cancer cells. ACS Appl. Mater. Interfaces 9(41), 35562–35573 (2017).
    • 51 Nappini S, Magnano E, Bondino F et al. Surface charge and coating of CoFe2O4 nanoparticles: evidence of preserved magnetic and electronic properties. J. Phys. Chem. C 119(45), 25529–25541 (2015).
    • 52 Nakayama Y, Mustapic M. Magnetic nanoparticles for ‘smart liposomes’. Eur. Biophys. J. 44, 647–654 (2015).
    • 53 Pon-on W, Charoenphandhu N, Tang I, Jongwattanapisan P, Krishnamra N, Hoonsawat R. Encapsulation of magnetic CoFe2O4 in SiO2 nanocomposites using hydroxyapatite as templates: a drug delivery system. Mater. Chem. Phys. 131(1–2), 485–494 (2011).
    • 54 Wu H, Liu G, Wang X et al. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 7, 3496–3504 (2011).
    • 55 Georgiadou V, Makris G, Papagiannopoulou D, Vourlias G, Dendrinou-Samara C. Octadecylamine-mediated versatile coating of CoFe2O4 NPs for the sustained release of anti-inflammatory drug naproxen and in vivo target selectivity. ACS Appl. Mater. Interfaces 8(14), 9345–9360 (2016).
    • 56 Mushtaq MW, Kanwal F, Batool A et al. Polymer-coated CoFe2O4 nanoassemblies as biocompatible magnetic nanocarriers for anticancer drug delivery. J. Mater. Sci. 52(16), 9282–9293 (2017).
    • 57 Barbucci R, Giani G, Fedi S, Bottari S, Casolaro M. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery. Acta Biomater. 8(12), 4244–4252 (2012).
    • 58 Kim JI, Chun C, Kim B et al. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials 33(1), 218–224 (2012).
    • 59 Sattarahmady N, Zare T, Mehdizadeh AR et al. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: in vitro and in vivo imaging studies. Colloids Surfaces B Bio. 129, 15–20 (2015).
    • 60 Vecchione R, Quagliariello V, Giustetto P et al. Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies. Nanomed. Nanotech. Biol. Med. 13(1), 275–286 (2017).
    • 61 Novotna B, Turnovcova K, Veverka P et al. The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells. Nanotoxicology 10(6), 662–670 (2016).
    • 62 Kevadiya BD, Bade AN, Woldstad C et al. Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging. Acta Biomater. 49, 507–520 (2017).
    • 63 Zhang Q, Yin T, Gao G et al. Multifunctional core@shell magnetic nanoprobes for enhancing targeted magnetic resonance imaging and fluorescent labeling in vitro and in vivo. ACS Appl. Mater. Interfaces 9(21), 17777–17785 (2017).
    • 64 Fortin J-P, Wilhelm C, Servais J, Ménager C, Jean-Claude Bacri, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129(14), 2628–2635 (2007).
    • 65 Fantechi E, Innocenti C, Albino M, Lottini E, Sangregorio C. Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles. J. Magn. Magn. Mater. 380, 365–371 (2015).
    • 66 Sathya A, Guardia P, Brescia R et al. CoxFe3-xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem. Mater. 28(6), 1769–1780 (2016).
    • 67 Mohapatra J, Xing M, Liu JP. Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange. AIP Adv. 8(5), 3–8 (2018).
    • 68 Bohara RA, Thorat ND, Chaurasia AK, Pawar SH. Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv. 5(58), 47225–47234 (2015).
    • 69 Cano ME, Medina RH, Fernandez VVA, Garcia-Casillas PE. Magnetic heating ability of silica–cobalt ferrite nanoparticles. Rev. Mex. Ing. Química. 13(3), 555–561 (2014).
    • 70 Kahil H, El_Sayed HM, Elsayed EM, Sallam AM, Talaat M, Sattar AA. Effect of in vitro magnetic fluid hyperthermia using citrate coated cobalt ferrite nanoparticles on tumor cell death. Rom. J. Biophys. 25(3), 209–224 (2015).
    • 71 Oh Y, Moorthy MS, Manivasagan P, Bharathiraja S, Oh J. Biochimie magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles. Biochimie. 133, 7–19 (2017).
    • 72 Iatridi Z, Vamvakidis K, Tsougos I, Vassiou K, Dendrinou-Samara C, Bokias G. multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications. ACS Appl. Mater. Interfaces 8(51), 35059–35070 (2016).
    • 73 Yang JC, Chen Y, Li YH, Yin XB. Magnetic resonance imaging-guided multi-drug chemotherapy and photothermal synergistic therapy with pH and NIR-stimulation release. ACS Appl. Mater. Interfaces 9(27), 22278–22288 (2017). • Recent research article highlighting multimodal therapy for cancer using cobalt ferrite nanoparticles.
    • 74 Fantechi E, Innocenti C, Zanardelli M et al. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano. 8, 4705–4719 (2014).
    • 75 Marmorato P, Ceccone G, Gianoncelli A et al. Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicol. Lett. 207(2), 128–136 (2011).
    • 76 Bregar VB, Lojk J, Šuštar V, Veranic P, Pavlin M. Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate. Int. J. Nanomedicine 8, 919–931 (2013).
    • 77 Pašukonienė V, Mlynska A, Steponkienė S et al. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells. Medicina (Buenos Aires) 50(4), 237–244 (2014).
    • 78 Abudayyak M, Altincekic Gurkaynak T, Ozhan G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biol. Trace Elem. Res. 175(2), 458–465 (2017).
    • 79 Laznev K, Tzerkovsky D, Kekalo K, Zhavnerko G, Agabekov V. Iron-cobalt ferrite nanoparticles – biocompatibility and distribution after intravenous administration to rat. IEEE Trans. Magn. 49(1), 425–428 (2013).
    • 80 Mohapatra S, Rout SR, Maiti S, Maiti TK, Panda AB. Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J. Mater. Chem. 21(25), 9185–9193 (2011).
    • 81 Kückelhaus S, Garcia VAP, Lacava LM et al. Biological investigation of a citrate-coated cobalt-ferrite-based magnetic fluid. J. App. Phys. 93, 6707–6708 (2003).
    • 82 Morais PC, Santos RL, Pimenta ACM, Azevedo RB, Lima ECD. Preparation and characterization of ultra-stable biocompatible magnetic fluids using citrate-coated cobalt ferrite nanoparticles. Thin Solid Films 515(1), 266–270 (2006).
    • 83 Gharibshahian M, Mirzaee O, Nourbakhsh MS. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite. J. Magn. Magn. Mater. 425, 48–56 (2017).
    • 84 Tamhankar PM, Kulkarni AM, Watawe SC. Functionalization of cobalt ferrite nanoparticles with alginate coating for biocompatible applications. Mater. Sci. Appl. 2(9), 1317–1321 (2011).
    • 85 Salunkhe AB, Khot VM, Thorat ND et al. Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl. Surf. Sci. 264(3), 598–604 (2013).
    • 86 Lojk J, Strojan K, Mis K et al. Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicol. Lett. 270, 108–118 (2017).
    • 87 Sanpo N, Tharajak J, Li Y, Berndt CC, Wen C, Wang J. Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles. J. Nanoparticle Res. 16(7) (2014).
    • 88 Finetti F, Terzuoli E, Donnini S, Uva M, Ziche M, Morbidelli L. Monitoring endothelial and tissue responses to cobalt ferrite nanoparticles and hybrid hydrogels. PLoS ONE 11(12), 1–15 (2016).
    • 89 Ahmad F, Liu X, Zhou Y, Yao H. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio). Aquat. Toxicol. 166, 21–28 (2015).
    • 90 Hanini A, Massoudi M El, Gavard J, Kacem K, Ammar S, Souilem O. Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit. Environ. Toxicol. Pharmacol. 45, 321–327 (2016).
    • 91 Abudayyak M, Altincekic Gurkaynak T, Ozhan G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biol. Trace Elem. Res. 175(2), 458–465 (2017).
    • 92 Kim D, Kim K, Kim K, Shim I, Lee Y. In vitro & in vivo toxicity of CoFe2O4 for application to magnetic hyperthermia. NSTI Nanotech. 2, 748–751 (2007).
    • 93 Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alshamsan A. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surfaces B Bio. 148, 665–673 (2016).
    • 94 Lima DR, Jiang N, Liu X et al. Employing calcination as a facile strategy to reduce the cytotoxicity in CoFe2O4 and NiFe2O4 nanoparticles. ACS Appl. Mater. Interfaces 9(45), 39830–39838 (2017).