We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

The activity of silver nanoparticles against microalgae of the Prototheca genus

    Tomasz Jagielski

    *Author for correspondence:

    E-mail Address: t.jagielski@biol.uw.edu.pl

    Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, I. Miecznikowa 1, 02–096, Poland

    , 1
    Zofia Bakuła

    Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, I. Miecznikowa 1, 02–096, Poland

    ,
    Małgorzata Pleń

    Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, I. Miecznikowa 1, 02–096, Poland

    ,
    Michał Kamiński

    Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, I. Miecznikowa 1, 02–096, Poland

    ,
    Julita Nowakowska

    Laboratory of Electron & Confocal Microscopy, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02–096, Warsaw, Poland

    ,
    Jacek Bielecki

    Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, I. Miecznikowa 1, 02–096, Poland

    ,
    Krystyna I Wolska

    Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, I. Miecznikowa 1, 02–096, Poland

    &
    Anna M Grudniak

    Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, I. Miecznikowa 1, 02–096, Poland

    Published Online:https://doi.org/10.2217/nnm-2017-0370

    Aim: To investigate the in vitro activity of silver NPs (AgNPs) against pathogenic microalgae of the Prototheca genus. Materials & methods: The antialgal potential of AgNPs against Prototheca species of both clinical and environmental origin was assessed from minimum inhibitory (algistatic) and algicidal concentrations. The in vitro cytotoxicity of AgNPs against bovine mammary epithelial cell line was evaluated by means of the standard MTT assay.Results: AgNPs showed a strong killing activity toward Prototheca algae, as the minimal algicidal concentration (MAC) values matched perfectly the corresponding minimum inhibitory concentration (MIC) values for all species (MAC = MIC, 1–4 mg/l), except P. stagnora (MIC > 8 mg/l). The concentrations inhibitory to pathogenic Prototheca spp. (MIC, 1–4 mg/l) were below the concentrations at which any toxicity in epithelial cells could be observed (CC20 > 6 mg/l). Conclusion: The study emphasizes the potential of AgNPs as a new therapeutic tool for the management of Prototheca infections.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
    • 2 Jagielski T, Lagneau PE. Protothecosis. A pseudofungal infection. J. Mycol. Med. 17, 261–270 (2007). •• A comprehensive review on Prototheca spp. and protothecal infections.
    • 3 Roesler U, Möller A, Hensel A, Baumann D, Truyen U. Diversity within the current algal species Prototheca zopfii: a proposal for two Prototheca zopfii genotypes and description of a novel species, Prototheca blaschkeae sp. nov. Int. J. Sys. Evol. Microbiol. 56, 1–7 (2006).
    • 4 Satoh K, Ooe K, Nagayama H, Makimura K. Prototheca cutis sp. nov., a newly discovered pathogen of protothecosis isolated from inflamed human skin. Int. J. Sys. Evol. Microbiol. 60, 1236–1240 (2010).
    • 5 Masuda M, Hirose N, Ishikawa T. Prototheca miyajii sp. nov., isolated from a patient with systemic protothecosis. Int. J. Sys. Evol. Microbiol. 66, 1510–1520 (2016).
    • 6 Nagatsuka Y, Kiyuna T, Kigawa R, Sano C, Sugiyama J. Prototheca tumulicola sp. nov., a novel achlorophyllous algal species isolated from the stone chamber interior of the Takamatsuzuka Tumulus. Mycoscience 58, 53–59 (2017).
    • 7 Todd JR, King JW, Oberle A et al. Protothecosis: report of a case with 20 year follow-up, and review of previously published cases. Med. Mycol. 50, 673–689 (2012). • A most recent review of reported cases of human protothecosis.
    • 8 Bueno VF, de Mesquita AJ, Neves RB et al. Epidemiological and clinical aspects of the first outbreak of bovine mastitis caused by Prototheca zopfii in Goiás State, Brazil. Mycopathologia 161, 141–145 (2006).
    • 9 Gao J, Zhang HQ, He JZ et al. Characterization of Prototheca zopfii associated with outbreak of bovine clinical mastitis in herd of Beijing, China. Mycopathologia 173, 275–281 (2012).
    • 10 Ricchi M, De Cicco C, Buzzini P et al. First outbreak of bovine mastitis caused by Prototheca blaschkeae. Vet. Microbiol. 162, 997–999 (2013).
    • 11 Jagielski T, Lassa H, Ahrholdt J, Malinowski E, Roesler U. Genotyping of bovine Prototheca mastitis isolates from Poland. Vet. Microbiol. 149, 283–287 (2011).
    • 12 Buzzini P, Turchetti B, Branda E et al. Large-scale screening of the in vitro susceptibility of Prototheca zopfii towards polyene antibiotics. Med. Mycol. 46, 511–514 (2008).
    • 13 Jagielski T, Buzzini P, Lassa H et al. Multicentre Etest evaluation of in vitro activity of conventional antifungal drugs against European bovine mastitis Prototheca spp. isolates. J. Antimicrob. Chemother. 67, 1945–1947 (2012). •• A multicenter, cross-national study on susceptibility of Prototheca spp. against antifungal agents.
    • 14 Lassa H, Malinowski E. Resistance of yeasts and algae isolated from cow mastitic milk to antimicrobial agents. Bull. Vet. Inst. Pulawy 51, 575–578 (2007).
    • 15 Tortorano AM, Prigitano A, Dho G, Piccinini R, Daprà V, Viviani MA. In vitro activity of conventional antifungal drugs and natural essences against the yeast-like alga Prototheca. J. Antimicrob. Chemother. 61, 1312–1314 (2008).
    • 16 Turchetti B, Pinelli P, Buzzini P et al. In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother. Res. 19, 44–49 (2005).
    • 17 Buzzini P, Menichetti S, Pagliuca C, Viglianisi C, Branda E, Turchetti B. Antimycotic activity of 4-thioisosteres of flavonoids towards yeast and yeast-like microorganisms. Bioorg. Med. Chem. Lett. 18, 3731–3733 (2008).
    • 18 Tomasinsig L, Skerlavaj B, Scarsini M et al. Comparative activity and mechanism of action of three types of bovine antimicrobial peptides against pathogenic Prototheca spp. J. Pept. Sci. 18, 105–113 (2012).
    • 19 Cunha LT, Pugine SMP, Silva MRM, Costa EJ, De Melo MP. Microbicidal action of indole-3-acetic acid combined with horseradish peroxidase on Prototheca zopfii from bovine mastitis. Mycopathologia 169, 99–105 (2010).
    • 20 Grzesiak B, Głowacka A, Krukowski H, Lisowski A, Lassa H, Sienkiewicz M. The in vitro efficacy of essential oils and antifungal drugs against Prototheca zopfii. Mycopathologia 181, 609–615 (2016).
    • 21 Bouari C, Bolfa P, Borza G, Nadăş G, Cătoi C, Fiţ N. Antimicrobial activity of Mentha piperita and Saturenja hortensis in a murine model of cutaneous protothecosis. J. Mycol. Méd. 24, 34–43 (2014).
    • 22 Alves AC, Capra E, Morandi S et al. In vitro algicidal effect of guanidine on Prototheca zopfii genotype 2 strains isolated from clinical and subclinical bovine mastitis. Lett. Appl. Microbiol. 64, 419–423 (2017).
    • 23 Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol. Pharm. 6, 1388–1401 (2009).
    • 24 Rigo C, Ferroni L, Tocco I et al. Active silver nanoparticles for wound healing. Int. J. Mol. Sci. 14, 4817–4840 (2013).
    • 25 Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem. 57, 6246–6252 (2009).
    • 26 Li Q, Mahendra S, Lyon DY et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602 (2008).
    • 27 Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28, 580–588 (2010).
    • 28 Vance ME, Kuiken T, Vejerano EP et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015).
    • 29 Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanothechnol. 4, 141–144 (2008).
    • 30 Paredes D, Ortiz C, Torres R. Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Nanomedicine 9, 1717–1729 (2014).
    • 31 Martinez F, Olive PL, Banuelos A et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6, 681–688 (2010). • A comprehensive review on antimicrobial action and cytotoxicity of silver nanoparticles.
    • 32 Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 18, 1482–1484 (2008).
    • 33 Panácek A, Kolár M, Vecerová R et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30, 6333–6340 (2009).
    • 34 Tile VA, Bholay AD. Biosynthesis of silver nanoparticles and its antifungal activities. J. Environ. Res. Develop. 7, 338–345 (2012).
    • 35 Lu L, Sun RW, Chen R et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 13, 253–262 (2008).
    • 36 Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology 8, 1 (2010).
    • 37 Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem. 20, 1497–1502 (2009).
    • 38 Murugan K, Samidoss CM, Panneerselvam C et al. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol. Res. 114, 4087–4097 (2015).
    • 39 Rajakumar G, Rahuman AA. Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Res. Vet. Sci. 93, 303–309 (2011).
    • 40 Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 113, 2363–2373 (2014).
    • 41 Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH. Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr. Med. Chem. 20, 772–781 (2013).
    • 42 Chwalibog A, Sawosz E, Hotowy A et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed. 5, 1085–1094 (2010).
    • 43 Zavizion B, van Duffelen M, Schaeffer W, Politis I. Establishment and characterization of a bovine mammary epithelial cell line with unique properties. In vitro Cell Dev. Biol. Anim. 32, 138–148 (1996).
    • 44 CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; Approved Standard – (3rd Edition). CLSI document M27–A3. Clinical and Laboratory Standards Institute, PA, USA (2008).
    • 45 Jagielski T, Bakuła Z, Di Mauro S et al. A comparative study of the in vitro activity of iodopropynyl butylcarbamate and amphotericin B against Prototheca spp. isolates from European dairy herds. J. Dairy Sci. 100(9), 7435–7445 (2017).
    • 46 Luft JH. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409–414 (1961).
    • 47 Reynollds ES. The use of lead citrate at high pH as electron-opaque stain for electron microscopy. J. Cell. Biol. 17, 208–213 (1983).
    • 48 Alexander JW. History of the medical use of silver. Surg. Infect. 10, 289–292 (2009).
    • 49 Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, E1534 (2016).
    • 50 Sweet MJ, Singleton I. Silver nanoparticles: a microbial perspective. Adv. Appl. Microbiol. 77, 115–133 (2011).
    • 51 Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98, 1951–1961 (2014).
    • 52 Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol. 60, 523–530 (2013).
    • 53 Oukarroum A, Bras S, Perreault F, Popovic R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 78, 80–85 (2012).
    • 54 Książyk M, Asztemborska M, Stęborowski R, Bystrzejewska-Piotrowska G. Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bull. Environ. Contam. Toxicol. 94, 554–558 (2015).
    • 55 Zouzelka R, Cihakova P, Rihova Ambrozova J, Rathousky J. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.). Environ. Sci. Pollut. Res. Int. 23, 8317–8326 (2016).
    • 56 de Camargo Z, Fischman O. Prototheca stagnora, an encapsulated organism. Sabouraudia 17, 197–200 (1979).
    • 57 Sobukawa H, Kano R, Ito T et al. In vitro susceptibility of Prototheca zopfii genotypes 1 and 2. Med. Mycol. 49, 222–224 (2011).
    • 58 Morones JR, Elechiguerra JL, Camacho A et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005).
    • 59 Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6, 103–109 (2010).
    • 60 Xu Y, Gao C, Li X, He Y, Zhou L, Pang G. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J. Ocul. Pharmacol. Ther. 29, 270–274 (2013).
    • 61 Gambardella C, Costa E, Piazza V et al. Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar. Environ. Res. 111, 41–49 (2015).
    • 62 Navarro E, Piccapietra F, Wagner B et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42, 8959–8964 (2008).
    • 63 Conte MV, Pore RS. Taxonomic implications of Prototheca and Chlorella cell wall polysaccharide characterization. Arch. Mikrobiol. 92, 227–233 (1973).
    • 64 Jiravova J, Tomankova KB, Harvanova M et al. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro. Food Chem. Toxicol. 96, 50–61 (2016).
    • 65 Wang S, Lv J, Ma J, Zhang S. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology 10, 1129–1135 (2016).
    • 66 Melville PA, Benites NR, Sinhorini IL, Costa EO. Susceptibility and features of the ultrastructure of Prototheca zopfii following exposure to copper sulphate, silver nitrate and chlorexidine. Mycopathologia 156, 1–7 (2002).